|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Статьи
Правильно распределенные подмножества в комплексной плоскости
А. И. Абдулнагимовab, А. С. Кривошеевab a Башкирский государственный университет, 450076, Уфа, ул. Заки Валиди, 32, Россия
b Институт математики с ВЦ Уфимского научного центра РАН 450048, Уфа ул. Чернышевского, 112 Россия
Аннотация:
В работе исследуются условия существования правильно распределенного множества, которое является частью заданной последовательности комплексных чисел и к тому же содержит внутри себя заданную подпоследовательность этой последовательности. На этой основе изучаются задачи расщепления целых функций и их асимптотического поведения. Полученные результаты применяются также к проблемам полноты систем экспоненциальных мономов в выпуклых областях, представления функций, аналитических на выпуклых компактах, и к проблеме фундаментального принципа для инвариантных подпространств функций.
Ключевые слова:
правильно распределенное множество, ряд экспонент, целая функция, выпуклая область.
Поступила в редакцию: 25.06.2015
Образец цитирования:
А. И. Абдулнагимов, А. С. Кривошеев, “Правильно распределенные подмножества в комплексной плоскости”, Алгебра и анализ, 28:4 (2016), 1–46; St. Petersburg Math. J., 28:4 (2017), 433–464
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1500 https://www.mathnet.ru/rus/aa/v28/i4/p1
|
Статистика просмотров: |
Страница аннотации: | 573 | PDF полного текста: | 68 | Список литературы: | 75 | Первая страница: | 46 |
|