|
Алгебра и анализ, 2015, том 27, выпуск 6, страницы 234–241
(Mi aa1474)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Статьи
Rationally isotropic quadratic spaces are locally isotropic. III
I. Panina, K. Pimenovb a St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
b Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ pr., 28, Petergof, 198504, St. Petersburg, Russia
Аннотация:
Let $R$ be a regular semilocal domain containing a field such that all the residue fields are infinite. Let $K$ be the fraction field of $R$. Let $(R^n,q\colon R^n\to R)$ be a quadratic space over $R$ such that the quadric $\{q=0\}$ is smooth over $R$. If the quadratic space $(R^n,q\colon R^n\to R)$ over $R$ is isotropic over $K$, then there is a unimodular vector $v\in R^n$ such that $q(v)=0$. If $char(R)=2$, then in the case of even $n$ our assumption on $q$ is equivalent to the fact that $q$ is a nonsingular quadratic space and in the case of odd $n>2$ our assumption on $q$ is equivalent to the fact that $q$ is a semiregular quadratic space.
Ключевые слова:
quadratic form, regular local ring, isotropic vector, Grothendieck–Serre conjecture.
Поступила в редакцию: 15.06.2015
Образец цитирования:
I. Panin, K. Pimenov, “Rationally isotropic quadratic spaces are locally isotropic. III”, Алгебра и анализ, 27:6 (2015), 234–241; St. Petersburg Math. J., 27:6 (2016), 1029–1034
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1474 https://www.mathnet.ru/rus/aa/v27/i6/p234
|
|