|
Алгебра и анализ, 2015, том 27, выпуск 6, страницы 117–149
(Mi aa1469)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Статьи
Tate sequences and Fitting ideals of Iwasawa modules
C. Greithera, M. Kuriharab a Institut für Theoretische Informatik und Mathematik, Universität der Bundeswehr, München, 85577 Neubiberg, Germany
b Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Аннотация:
We consider Abelian CM extensions $L/k$ of a totally real field $k$, and we essentially determine the Fitting ideal of the dualized Iwasawa module studied by the second author in the case where only places above $p$ ramify. In doing so we recover and generalize the results mentioned above. Remarkably, our explicit description of the Fitting ideal, apart from the contribution of the usual Stickelberger element $\dot\Theta$ at infinity, only depends on the group structure of the Galois group $\operatorname{Gal}(L/k)$ and not on the specific extension $L$. From our computation it is then easy to deduce that $\dot T\dot\Theta$ is not in the Fitting ideal as soon as the $p$-part of $\operatorname{Gal}(L/k)$ is not cyclic. We need a lot of technical preparations: resolutions of the trivial module $\mathbb Z$ over a group ring, discussion of the minors of certain big matrices that arise in this context, and auxiliary results about the behavior of Fitting ideals in short exact sequences.
Ключевые слова:
Tate sequences, class groups, cohomology, totally real fields, CM-fields.
Поступила в редакцию: 15.06.2015
Образец цитирования:
C. Greither, M. Kurihara, “Tate sequences and Fitting ideals of Iwasawa modules”, Алгебра и анализ, 27:6 (2015), 117–149; St. Petersburg Math. J., 27:6 (2016), 941–965
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1469 https://www.mathnet.ru/rus/aa/v27/i6/p117
|
Статистика просмотров: |
Страница аннотации: | 215 | PDF полного текста: | 66 | Список литературы: | 42 | Первая страница: | 10 |
|