|
Алгебра и анализ, 2015, том 27, выпуск 3, страницы 183–201
(Mi aa1440)
|
|
|
|
Статьи
Contact of a thin free boundary with a fixed one in the Signorini problem
N. Matevosyana, A. Petrosyanb a Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
b Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
Аннотация:
The Signorini problem is studied near a fixed boundary where the solution is “clamped down” or “glued”. It is shown that, in general, the solutions are at least $C^{1/2}$ regular and that this regularity is sharp. Near the actual points of contact of the free boundary with the fixed one, the blowup solutions are shown to have homogeneity $\kappa\geq3/2$, while at the noncontact points the homogeneity must take one of the values: $1/2,3/2,\dots,m-1/2,\ldots$
Ключевые слова:
Signorini problem, thin obstacle problem, thin free boundary, optimal regularity, contact with fixed boundary, Almgren's frequency formula.
Поступила в редакцию: 12.01.2015
Образец цитирования:
N. Matevosyan, A. Petrosyan, “Contact of a thin free boundary with a fixed one in the Signorini problem”, Алгебра и анализ, 27:3 (2015), 183–201; St. Petersburg Math. J., 27:3 (2016), 481–494
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1440 https://www.mathnet.ru/rus/aa/v27/i3/p183
|
Статистика просмотров: |
Страница аннотации: | 239 | PDF полного текста: | 56 | Список литературы: | 39 | Первая страница: | 12 |
|