|
Алгебра и анализ, 2014, том 26, выпуск 3, страницы 131–158
(Mi aa1386)
|
|
|
|
Статьи
Morse–Novikov theory, Heegaard splittings, and closed orbits of gradient flows
H. Godaa, H. Matsudab, A. Pajitnovc a Department of Mathematics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
b Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan
c Laboratoire de Mathématiques, Jean-Leray UMR 6629, Université de Nantes, Faculté des Sciences, 2, rue de la Houssinière, 44072, Nantes, Cedex, France
Аннотация:
The work of Donaldson and Mark made the structure of the Seiberg–Witten invariant of $3$-manifolds clear. It corresponds to certain torsion type invariants counting flow lines and closed orbits of a gradient flow of a circle-valued Morse map on a $3$-manifold. In the paper, these invariants are studied by using the Morse–Novikov theory and Heegaard splitting for sutured manifolds, and detailed computations are made for knot complements.
Ключевые слова:
oriented knot, sutured manifold, Morse map, Novikov complex, half-transversal gradients, Lefschetz zeta function.
Поступила в редакцию: 02.03.2013
Образец цитирования:
H. Goda, H. Matsuda, A. Pajitnov, “Morse–Novikov theory, Heegaard splittings, and closed orbits of gradient flows”, Алгебра и анализ, 26:3 (2014), 131–158; St. Petersburg Math. J., 26:3 (2015), 441–461
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1386 https://www.mathnet.ru/rus/aa/v26/i3/p131
|
Статистика просмотров: |
Страница аннотации: | 233 | PDF полного текста: | 79 | Список литературы: | 34 | Первая страница: | 5 |
|