|
Алгебра и анализ, 2013, том 25, выпуск 4, страницы 139–181
(Mi aa1348)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Статьи
Remarks on Hilbert identities, isometric embeddings, and invariant cubature
H. Nozakia, M. Sawab a Department of Mathematics, Aichi University of Education, Igaya-cho, Kariya-city 448-8542, Japan
b Graduate School of Information Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
Аннотация:
Victoir (2004) developed a method to construct cubature formulas with various combinatorial objects. Motivated by this, the authors generalize Victoir's method with one more combinatorial object, called regular $t$-wise balanced designs. Many cubature formulas of small indices with few points are provided, which are used to update Shatalov's table (2001) of isometric embeddings in small-dimensional Banach spaces, as well as to improve some classical Hilbert identities. A famous theorem of Bajnok (2007) on Euclidean designs invariant under the Weyl group of Lie type $B$ is extended to all finite irreducible reflection groups. A short proof of the Bajnok theorem is presented in terms of Hilbert identities.
Ключевые слова:
cubature formula, Hilbert identity, isometric embedding, Victoir method.
Поступила в редакцию: 05.04.2012
Образец цитирования:
H. Nozaki, M. Sawa, “Remarks on Hilbert identities, isometric embeddings, and invariant cubature”, Алгебра и анализ, 25:4 (2013), 139–181; St. Petersburg Math. J., 25:4 (2014), 615–646
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1348 https://www.mathnet.ru/rus/aa/v25/i4/p139
|
|