|
Алгебра и анализ, 2013, том 25, выпуск 4, страницы 125–138
(Mi aa1347)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Статьи
Almost everywhere convergence of cone-like restricted two-dimensional Fejér means with respect to Vilenkin-like systems
K. Nagy Institute of Mathematics and Computer Sciences, College of Nyíregyháza, P.O. Box 166, Nyíregyháza, H-4400, Hungary
Аннотация:
For the two-dimensional Walsh system, Gát and Weisz proved the a.e. convergence of the Fejér means $\sigma_nf$ of integrable functions, where the set of indices is inside a positive cone around the identical function, that is, $\beta^{-1}\leq n_1/n_2\leq\beta$ is ensured with some fixed parameter $\beta\geq1$. The result of Gát and Weisz was generalized by Gát and the author in the way that the indices are inside a cone-like set.
In the present paper, the a.e. convergence is proved for the Fejér means of integrable functions with respect to two-dimensional Vilenkin-like systems provided that the set of indeces is in a cone-like set. That is, the result of Gát and the author is generalized to a general orthonormal system, which contains as special cases the Walsh system, the Vilenkin system, the character system of the group of 2-adic integers, the UDMD system, and the representative product system of CTD (compact totally disconnected) groups.
Ключевые слова:
Vilenkin group, Vilenkin system, pointwise convergence, Fejér means, orthonormal systems, two-dimensional Fourier series, compact totally disconnected group.
Поступила в редакцию: 13.06.2012
Образец цитирования:
K. Nagy, “Almost everywhere convergence of cone-like restricted two-dimensional Fejér means with respect to Vilenkin-like systems”, Алгебра и анализ, 25:4 (2013), 125–138; St. Petersburg Math. J., 25:4 (2014), 605–614
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1347 https://www.mathnet.ru/rus/aa/v25/i4/p125
|
|