|
Алгебра и анализ, 2013, том 25, выпуск 3, страницы 185–199
(Mi aa1338)
|
|
|
|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Статьи
On spectral estimates for the Schrödinger operators in global dimension 2
G. Rozenbluma, M. Solomyakb a Department of Mathematics, Chalmers University of Technology and The University of Gothenburg, S-412, 96, Gothenburg, Sweden
b Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
Аннотация:
The problem of finding eigenvalue estimates for the Schrödinger operator turns out to be most complicated for the dimension 2. Some important results for this case have been obtained recently. In the paper, these results are discussed, and their counterparts are established for the operator on the combinatorial and metric graphs corresponding to the lattice $\mathbb Z^2$.
Ключевые слова:
eigenvalue estimates, Schrödinger operator, metric graphs, local dimension.
Поступила в редакцию: 02.09.2012
Образец цитирования:
G. Rozenblum, M. Solomyak, “On spectral estimates for the Schrödinger operators in global dimension 2”, Алгебра и анализ, 25:3 (2013), 185–199; St. Petersburg Math. J., 25:3 (2014), 495–505
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1338 https://www.mathnet.ru/rus/aa/v25/i3/p185
|
|