Аннотация:
Optimal regularity near the initial state is established for weak solutions of the two-phase parabolic obstacle problem. The approach is sufficiently general to allow the initial data to belong to the class $C^{1,1}$.
Образец цитирования:
D. E. Apushkinskaya, N. N. Uraltseva, “Uniform estimates near the initial state for solutions of the two-phase parabolic problem”, Алгебра и анализ, 25:2 (2013), 63–74; St. Petersburg Math. J., 25:2 (2014), 195–203
\RBibitem{ApuUra13}
\by D.~E.~Apushkinskaya, N.~N.~Uraltseva
\paper Uniform estimates near the initial state for solutions of the two-phase parabolic problem
\jour Алгебра и анализ
\yr 2013
\vol 25
\issue 2
\pages 63--74
\mathnet{http://mi.mathnet.ru/aa1323}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114850}
\zmath{https://zbmath.org/?q=an:1304.35144}
\elib{https://elibrary.ru/item.asp?id=20730197}
\transl
\jour St. Petersburg Math. J.
\yr 2014
\vol 25
\issue 2
\pages 195--203
\crossref{https://doi.org/10.1090/S1061-0022-2014-01285-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343074000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924352195}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1323
https://www.mathnet.ru/rus/aa/v25/i2/p63
Эта публикация цитируется в следующих 5 статьяx:
Д. Е. Апушкинская, А. А. Архипова, В. М. Бабич, Г. С. Вейсс, И. А. Ибрагимов, С. В. Кисляков, Н. В. Крылов, А. А. Лаптев, А. И. Назаров, Г. А. Серегин, Т. А. Суслина, Х. Шахголян, “К 90-летию Нины Николаевны Уральцевой”, УМН, 79:6(480) (2024), 179–192; D. E. Apushkinskaya, A. A. Arkhipova, V. M. Babich, G. S. Weiss, I. A. Ibragimov, S. V. Kislyakov, N. V. Krylov, A. A. Laptev, A. I. Nazarov, G. A. Seregin, T. A. Suslina, H. Shahgholian, “On the 90th birthday of Nina Nikolaevna Uraltseva”, Russian Math. Surveys, 79:6 (2024), 1119–1131
D. Apushkinskaya, Free boundary problems. Regularity properties near the fixed boundary, Lect. Notes Math., 2218, Springer, Cham, 2018, xvii+146 pp.
Curran M., Gurevich P., Tikhomirov S., “Recent Advances in Reaction-Diffusion Equations with Non-ideal Relays”, Control of Self-Organizing Nonlinear Systems, Understanding Complex Systems, eds. Scholl E., Klapp SH., Hovel P., Springer-Verlag Berlin, 2016, 211–234
J. I. Díaz, T. Mingazzini, “Free boundaries touching the boundary of the domain for some reaction-diffusion problems”, Nonlinear Anal., 119 (2015), 275–294
D. E. Apushkinskaya, N. N. Uraltseva, “On regularity properties of solutions to the hysteresis-type problem”, Interface Free Bound., 17:1 (2015), 93–115