|
Алгебра и анализ, 2012, том 24, выпуск 4, страницы 137–155
(Mi aa1295)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Статьи
An operator equation characterizing the Laplacian
H. Königa, V. Milmanb a Mathematisches Seminar, Universität Kiel, Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Аннотация:
The Laplace operator on $\mathbb R^n$ satisfies the equation
$$
\Delta(fg)(x)=(\Delta f)(x)g(x)+f(x)(\Delta g)(x)+2\langle f'(x),g'(x)\rangle
$$
for all $f,g\in C^2(\mathbb R^n,\mathbb R)$ and $x\in\mathbb R^n$. In the paper, an operator equation generalizing this product formula is considered. Suppose $T\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R)$ and $A\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R^n)$ are operators satisfying the equation
\begin{equation}
T(fg)(x)=(Tf)(x)g(x)+f(x)(Tg)(x)+\langle(Af)(x),(Ag)(x)\rangle
\tag{1}
\end{equation}
for all $f,g\in C^2(\mathbb R^n,\mathbb R)$ and $x\in\mathbb R^n$. Assume, in addition, that $T$ is $O(n)$-invariant and annihilates the affine functions, and that $A$ is nondegenerate. Then $T$ is a multiple of the Laplacian on $\mathbb R^n$, and $A$ a multiple of the derivative,
$$
(Tf)(x)=\frac{d(\|x\|)^2}2(\Delta f)(x),\quad (Af)(x)=d(\|x\|)f'(x),
$$
where $d\in C(\mathbb R_+,\mathbb R)$ is a continuous function. The solutions are also described if $T$ is not $O(n)$-invariant or does not annihilate the affine functions. For this, all operators $(T,A)$ satisfying (1) for scalar operators $A\colon C^2(\mathbb R^n,\mathbb R)\to C(\mathbb R^n,\mathbb R)$ are determined. The map $A$, both in the vector and the scalar case, is closely related to $T$ and there are precisely three different types of solution operators $(T,A)$.
No continuity or linearity requirement is imposed on $T$ or $A$.
Ключевые слова:
Laplace operator, second order Leibniz rule, operator functional equations.
Поступила в редакцию: 01.11.2011
Образец цитирования:
H. König, V. Milman, “An operator equation characterizing the Laplacian”, Алгебра и анализ, 24:4 (2012), 137–155; St. Petersburg Math. J., 24:4 (2013), 631–644
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1295 https://www.mathnet.ru/rus/aa/v24/i4/p137
|
Статистика просмотров: |
Страница аннотации: | 380 | PDF полного текста: | 134 | Список литературы: | 34 | Первая страница: | 13 |
|