|
Эта публикация цитируется в 31 научных статьях (всего в 31 статьях)
Статьи
The rate of convergence in the method of alternating projections
C. Badeaa, S. Grivauxa, V. Müllerb a Laboratoire Paul Painlevé, Université Lille 1, CNRS UMR 8524, Villeneuve d'Ascq, France
b Institute of Mathematics AV CR, Prague, Czech Republic
Аннотация:
The cosine of the Friedrichs angle between two subspaces is generalized to a parameter associated with several closed subspaces of a Hilbert space. This parameter is employed to analyze the rate of convergence in the von Neumann–Halperin method of cyclic alternating projections. General dichotomy theorems are proved, in the Hilbert or Banach space situation, providing conditions under which the alternative QUC/ASC (quick uniform convergence versus arbitrarily slow convergence) holds. Several meanings for ASC are proposed.
Ключевые слова:
Friedrichs angle, method of alternating projections, arbitrary slow convergence.
Поступила в редакцию: 25.10.2009
Образец цитирования:
C. Badea, S. Grivaux, V. Müller, “The rate of convergence in the method of alternating projections”, Алгебра и анализ, 23:3 (2011), 1–30; St. Petersburg Math. J., 23:3 (2012), 413–434
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1241 https://www.mathnet.ru/rus/aa/v23/i3/p1
|
Статистика просмотров: |
Страница аннотации: | 581 | PDF полного текста: | 133 | Список литературы: | 67 | Первая страница: | 11 |
|