|
Алгебра и анализ, 2010, том 22, выпуск 3, страницы 177–190
(Mi aa1191)
|
|
|
|
Эта публикация цитируется в 24 научных статьях (всего в 24 статьях)
Статьи
Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of $\frak{gl}_N$
E. Mukhina, V. Tarasovba, A. Varchenkoc a Department of Mathematical Sciences, Indiana University — Purdue University Indianapolis, Indianapolis, IN, USA
b St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia
c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Аннотация:
It is shown that the Gaudin Hamiltonians $H_1,\dots,H_n$ generate the Bethe algebra of the $n$-fold tensor power of the vector representation of $\frak{gl}_N$. Surprisingly, the formula for the generators of the Bethe algebra in terms of the Gaudin Hamiltonians does not depend on $N$. Moreover, this formula coincides with Wilson's formula for the stationary Baker–Akhiezer function on the adelic Grassmannian.
Ключевые слова:
Gaudin model, Bethe algebra, Calogero–Moser space.
Поступила в редакцию: 15.11.2009
Образец цитирования:
E. Mukhin, V. Tarasov, A. Varchenko, “Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of $\frak{gl}_N$”, Алгебра и анализ, 22:3 (2010), 177–190; St. Petersburg Math. J., 22:3 (2011), 463–472
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1191 https://www.mathnet.ru/rus/aa/v22/i3/p177
|
|