|
Алгебра и анализ, 2009, том 21, выпуск 6, страницы 227–240
(Mi aa1168)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Статьи
Approximation of discrete functions and size of spectrum
A. Olevskiĭa, A. Ulanovskiĭb a School of Mathematics, Tel Aviv University, Ramat Aviv, Israel
b Stavanger University, Stavanger, Norway
Аннотация:
Let $\Lambda\subset\mathbb R$ be a uniformly discrete sequence and $S\subset\mathbb R$ a compact set. It is proved that if there exists a bounded sequence of functions in the Paley–Wiener space $PW_S$ that approximates $\delta$-functions on $\Lambda$ with $l^2$-error $d$, then the measure of $S$ cannot be less than $2\pi(1-d^2)D^+(\Lambda)$. This estimate is sharp for every $d$. A similar estimate holds true when the norms of approximating functions have a moderate growth; the corresponding sharp growth restriction is found.
Ключевые слова:
Paley–Wiener space, Bernstein space, set of interpolation, approximation of discrete functions.
Поступила в редакцию: 20.08.2009
Образец цитирования:
A. Olevskiǐ, A. Ulanovskiǐ, “Approximation of discrete functions and size of spectrum”, Алгебра и анализ, 21:6 (2009), 227–240; St. Petersburg Math. J., 21:6 (2010), 1015–1025
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1168 https://www.mathnet.ru/rus/aa/v21/i6/p227
|
|