|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Статьи
Extension of matrices with entries in $H^\infty$ on coverings of Riemann surfaces of finite type
A. Brudnyi Department of Mathematics and Statistics, University of Calgary, Calgary, Canada
Аннотация:
The paper continues an earlier work of the author. An extension theorem is proved for matrices with entries in the algebra of bounded holomorphic functions defined on an unbranched covering of a Caratheodory hyperbolic Riemann surface of finite type.
Ключевые слова:
corona theorem, bounded holomorphic function, covering, Riemann surface of finite type.
Поступила в редакцию: 21.01.2008
Образец цитирования:
A. Brudnyi, “Extension of matrices with entries in $H^\infty$ on coverings of Riemann surfaces of finite type”, Алгебра и анализ, 21:3 (2009), 79–92; St. Petersburg Math. J., 21:3 (2010), 423–432
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1140 https://www.mathnet.ru/rus/aa/v21/i3/p79
|
|