Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2022
25 июля 2022 г. 17:15, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Феномен мягкости в дифференциальной топологии. Семинар 1

А. Д. Рябичев
Видеозаписи:
MP4 2,657.0 Mb
MP4 1,610.5 Mb

Количество просмотров:
Эта страница:196
Видеофайлы:101
Youtube:

А. Д. Рябичев



Аннотация: В середине прошлого века С. Смейл обнаружил, что сферу в трёхмерном пространстве можно непрерывно вывернуть наизнанку. В процессе выворачивания могут появляться самопересечения, но запрещены изломы (т.е. каждый достаточно маленький кусочек сферы должен быть гладким в любой момент времени).
Примерно в то же время Дж. Нэш доказал теорему об изометрическом вложении. Она позволяет, например, вложить в трёхмерное пространство тор, склеенный из прямоугольника, так что в итоге поверхность прямоугольника не будет растянута или сжата, а лишь гладко изогнута.
В дальнейшем М. Громов заметил, что оба применённых здесь метода обобщаются на довольно широкий класс геометрических задач, которым присуща некая «гибкость». Разработанная Громовым техника получила название h-принцип и была впоследствии широко популяризирована.
В этом курсе мы попробуем увидеть и почувствовать, как работает h-принцип, на нескольких простых примерах. В процессе мы также освоим ряд концептуальных приёмов и инструментов, часто применяющихся во многих других топологических задачах.
Примерный план:
  • регулярные гомотопии гладких кривых на плоскости (разминка),
  • векторные расслоения, послойные морфизмы (техническая подготовка),
  • теорема Смейла-Хирша, выворачивание сферы (и другие примеры),
  • мягкость отображений с заданными особенностями (если останется время).

Пререквизиты. Для комфортного понимания курса от слушателей потребуется владение азами теории множеств (отображения, декартово произведение) и анализа (эпсилон-дельта формализм, интуитивное понимание непрерывности и геометрического смысла производной), а также хорошее пространственное воображение.

Website: https://mccme.ru/dubna/2022/courses/ryabichev.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024