6 citations to https://www.mathnet.ru/rus/zvmmf7126
  1. E. A. Volkov, A. A. Dosiev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Ж. вычисл. матем. и матем. физ., 52:6 (2012), 1001–1001  mathnet  elib; Comput. Math. Math. Phys., 52:6 (2012), 879–886  crossref  isi  elib
  2. Dosiyev A.A., “New Properties of 9-Point Finite Difference Solution of the Laplace Equation”, Mediterr J Math, 8:3 (2011), 451–462  crossref  mathscinet  zmath  isi  elib
  3. Dosiyev A.A., Buranay S.C., “On the Order of Maximum Error of the Finite Difference Solutions of Laplace's Equation on Rectangles”, Anziam J, 50:1 (2008), 59–73  crossref  mathscinet  zmath  isi
  4. Volkov E.A., Dosiyev A.A., “A high accurate composite grid method for solving Laplace's boundary value problems with singularities”, Russian J Numer Anal Math Modelling, 22:3 (2007), 291–307  crossref  mathscinet  zmath  isi  elib
  5. A. A. Dosiev, “A fourth-order accurate composite grid method for solving Laplace's boundary value problems with singularities”, Ж. вычисл. матем. и матем. физ., 42:6 (2002), 867–884  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:6 (2002), 832–849
  6. Volkov E.A., “On the grid method for solving the Dirichlet problem for the Laplace equation in a cylinder with lateral surface of class C-1,C-1”, Russian J Numer Anal Math Modelling, 15:6 (2000), 521–538  crossref  mathscinet  zmath  isi