8 citations to https://www.mathnet.ru/rus/zvmmf4978
  1. А. А. Досиев, Э. Целикер, “Об интерполяционном операторе четвертого порядка точности для разностного решения трехмерного уравнения Лапласа”, Сиб. журн. вычисл. матем., 27:1 (2024), 33–48  mathnet  crossref
  2. A. A. Dosiyev, E. Celiker, “On the Fourth Order Accurate Interpolation Operator for the Difference Solution of the 3-Dimensional Laplace Equation”, Numer. Analys. Appl., 17:1 (2024), 28  crossref
  3. A. A. Dosiyev, “A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 24:2 (2024), 162–172  mathnet  crossref
  4. Dosiyev A.A. Sarikaya H., “On the Difference Method For Approximation of Second Order Derivatives of a Solution of Laplace'S Equation in a Rectangular Parallelepiped”, Filomat, 33:2 (2019), 633–643  crossref  mathscinet  isi
  5. Dosiyev A.A., Sarikaya H., “14-Point Difference Operator For the Approximation of the First Derivatives of a Solution of Laplace'S Equation in a Rectangular Parallelepiped”, Filomat, 32:3 (2018), 791–800  crossref  mathscinet  isi  scopus
  6. Dosiyev A.A. Abdussalam A., “On the High Order Convergence of the Difference Solution of Laplace'S Equation in a Rectangular Parallelepiped”, Filomat, 32:3 (2018), 893–901  crossref  mathscinet  isi  scopus
  7. Celiker E. Dosiyev A.A., “On the fourth-order accurate approximations of the solution of the Dirichlet problem for Laplace?s equation in a rectangular parallelepiped”, NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA?2016): Proceedings of the 2nd International Conference ?Numerical Computations: Theory and Algorithms? (Pizzo Calabro, Italy, 19?25 June 2016), AIP Conference Proceedings, 1776, ed. Sergeyev Y. Kvasov D. DellAccio F. Mukhametzhanov M., Amer Inst Physics, 2016, 090008  crossref  mathscinet  isi  scopus
  8. E. A. Volkov, A. A. Dosiev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Ж. вычисл. матем. и матем. физ., 52:6 (2012), 1001–1001  mathnet  elib; Comput. Math. Math. Phys., 52:6 (2012), 879–886  crossref  isi  elib