8 citations to https://www.mathnet.ru/rus/zvmmf4978
-
А. А. Досиев, Э. Целикер, “Об интерполяционном операторе четвертого порядка точности для разностного решения трехмерного уравнения Лапласа”, Сиб. журн. вычисл. матем., 27:1 (2024), 33–48
-
A. A. Dosiyev, E. Celiker, “On the Fourth Order Accurate Interpolation Operator for the Difference Solution of the 3-Dimensional Laplace Equation”, Numer. Analys. Appl., 17:1 (2024), 28
-
A. A. Dosiyev, “A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 24:2 (2024), 162–172
-
Dosiyev A.A. Sarikaya H., “On the Difference Method For Approximation of Second Order Derivatives of a Solution of Laplace'S Equation in a Rectangular Parallelepiped”, Filomat, 33:2 (2019), 633–643
-
Dosiyev A.A., Sarikaya H., “14-Point Difference Operator For the Approximation of the First Derivatives of a Solution of Laplace'S Equation in a Rectangular Parallelepiped”, Filomat, 32:3 (2018), 791–800
-
Dosiyev A.A. Abdussalam A., “On the High Order Convergence of the Difference Solution of Laplace'S Equation in a Rectangular Parallelepiped”, Filomat, 32:3 (2018), 893–901
-
Celiker E. Dosiyev A.A., “On the fourth-order accurate approximations of the solution of the Dirichlet problem for Laplace?s equation in a rectangular parallelepiped”, NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA?2016): Proceedings of the 2nd International Conference ?Numerical Computations: Theory and Algorithms? (Pizzo Calabro, Italy, 19?25 June 2016), AIP Conference Proceedings, 1776, ed. Sergeyev Y. Kvasov D. DellAccio F. Mukhametzhanov M., Amer Inst Physics, 2016, 090008
-
E. A. Volkov, A. A. Dosiev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Ж. вычисл. матем. и матем. физ., 52:6 (2012), 1001–1001 ; Comput. Math. Math. Phys., 52:6 (2012), 879–886