15 citations to https://www.mathnet.ru/rus/zvmmf2723
  1. Г. К. Каменев, А. И. Поспелов, “Полиэдральная аппроксимация выпуклых компактных тел методами наполнения”, Ж. вычисл. матем. и матем. физ., 52:5 (2012), 818–828  mathnet  mathscinet  elib; G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Comput. Math. Math. Phys., 52:5 (2012), 680–690  crossref  isi  elib
  2. Р. В. Ефремов, Г. К. Каменев, “Об оптимальном порядке роста числа вершин и гиперграней в классе хаусдорфовых методов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 51:6 (2011), 1018–1031  mathnet  mathscinet; R. V. Efremov, G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 51:6 (2011), 952–964  crossref  isi
  3. Г. К. Каменев, “Скорость сходимости адаптивных методов полиэдральной аппроксимации выпуклых тел на начальном этапе”, Ж. вычисл. матем. и матем. физ., 48:5 (2008), 763–778  mathnet  mathscinet  zmath; G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738  crossref  isi
  4. Г. К. Каменев, “Теория двойственности оптимальных адаптивных методов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 48:3 (2008), 397–417  mathnet  mathscinet  zmath; G. K. Kamenev, “Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:3 (2008), 376–394  crossref  isi
  5. Е. М. Бронштейн, “Аппроксимация выпуклых множеств многогранниками”, Геометрия, СМФН, 22, РУДН, М., 2007, 5–37  mathnet  mathscinet  zmath; E. M. Bronshtein, “Approximation of Convex Sets by Polytopes”, Journal of Mathematical Sciences, 153:6 (2008), 727–762  crossref
  6. Г. К. Каменев, “Самодвойственные адаптивные алгоритмы полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 43:8 (2003), 1123–1137  mathnet  mathscinet  zmath; G. K. Kamenev, “Self-dual adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:8 (2003), 1073–1086
  7. Р. В. Ефремов, “Априорная оценка эффективности адаптивных алгоритмов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 43:1 (2003), 149–160  mathnet  mathscinet  zmath; R. V. Efremov, “An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:1 (2003), 146–156
  8. Kamenev G.K., “A polyhedral approximation method for convex bodies that is optimal with respect to the order of the number of support and distance function evaluations”, Doklady Mathematics, 67:1 (2003), 137–139  isi
  9. Г. К. Каменев, “Сопряженные адаптивные алгоритмы полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 42:9 (2002), 1351–1367  mathnet  mathscinet  zmath; G. K. Kamenev, “Conjugate adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:9 (2002), 1301–1316
  10. Р. В. Ефремов, Г. К. Каменев, “Априорная оценка асимптотической эффективности одного класса алгоритмов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 42:1 (2002), 23–32  mathnet  mathscinet  zmath; R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29
1
2
Следующая