9 citations to https://www.mathnet.ru/rus/zvmmf27
  1. A. A. Dosiyev, “A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 24:2 (2024), 162–172  mathnet  crossref
  2. Dosiyev A.A. Sarikaya H., “A Highly Accurate Difference Method For Approximating the Solution and Its First Derivatives of the Dirichlet Problem For Laplace'S Equation on a Rectangle”, Mediterr. J. Math., 18:6 (2021), 252  crossref  mathscinet  isi
  3. Ad{\i}güzel A. Dosiyev, Hediye Sar{\i}kaya, C. Cattani, A. Atangana, H. Bulut, Z. Hammouch, H.M. Baskonus, T. Mekkaoui, S. Agoujil, “A highly accurate corrected scheme in solving the Laplace's equation on a rectangle”, ITM Web Conf., 22 (2018), 01015  crossref
  4. Dosiyev A.A., Sarikaya H., “A Highly Accurate Difference Method For Solving the Dirichlet Problem For Laplace'S Equation on a Rectangle”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 040006  crossref  isi  scopus
  5. Berikelashvili G. Midodashvili B., “Method of corrections by higher order differences for elliptic equations with variable coefficients”, Georgian Math. J., 23:2 (2016), 169–180  crossref  mathscinet  zmath  isi  elib  scopus
  6. Berikelashvili G., Midodashvili B., “Method of Corrections By Higher Order Differences For Poisson Equation With Nonlocal Boundary Conditions”, Trans. A Razmadze Math. Inst., 170:2 (2016), 287–296  crossref  mathscinet  zmath  isi
  7. Berikelashvili G.K. Midodashvili B.G., “Compatible Convergence Estimates in the Method of Refinement By Higher-Order Differences”, Differ. Equ., 51:1 (2015), 107–115  crossref  mathscinet  zmath  isi  scopus
  8. Berikelashvili G., Midodashvili B., “on Increasing the Convergence Rate of Difference Solution To the Third Boundary Value Problem of Elasticity Theory”, Bound. Value Probl., 2015, 226  crossref  mathscinet  zmath  isi  elib  scopus
  9. Berikelashvili G., Gupta M.M., Midodashvili B., “on the Improvement of Convergence Rate of Difference Schemes With High Order Differences For a Convection-Diffusion Equation”, Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2014 (Icnaam-2014), AIP Conference Proceedings, 1648, eds. Simos T., Tsitouras C., Amer Inst Physics, 2015, UNSP 470002  crossref  mathscinet  isi  scopus