7 citations to https://www.mathnet.ru/rus/zvmmf1131
  1. Г. К. Каменев, “Скорость сходимости адаптивных методов полиэдральной аппроксимации выпуклых тел на начальном этапе”, Ж. вычисл. матем. и матем. физ., 48:5 (2008), 763–778  mathnet  mathscinet  zmath; G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738  crossref  isi
  2. Г. К. Каменев, “Теория двойственности оптимальных адаптивных методов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 48:3 (2008), 397–417  mathnet  mathscinet  zmath; G. K. Kamenev, “Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:3 (2008), 376–394  crossref  isi
  3. Lotov A.V., Miettinen K., “Visualizing the Pareto Frontier”, Multiobjective Optimization: Interactive and Evolutionary Approaches, Lecture Notes in Computer Science, 5252, 2008, 213–243  crossref  isi  scopus
  4. Н. Б. Брусникина, Г. К. Каменев, “О сложности и методах полиэдральной аппроксимации выпуклых тел с частично гладкой границей”, Ж. вычисл. матем. и матем. физ., 45:9 (2005), 1555–1565  mathnet  mathscinet  zmath; N. B. Brusnikina, G. K. Kamenev, “On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary”, Comput. Math. Math. Phys., 45:9 (2005), 1500–1510
  5. Efremov R.V., Kamenev G.K., Lotov A.V., “Constructing an economical description of a polytope using the duality theory of convex sets”, Doklady Mathematics, 70:3 (2004), 934–936  mathscinet  isi
  6. Г. К. Каменев, “Самодвойственные адаптивные алгоритмы полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 43:8 (2003), 1123–1137  mathnet  mathscinet  zmath; G. K. Kamenev, “Self-dual adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:8 (2003), 1073–1086
  7. Р. В. Ефремов, “Априорная оценка эффективности адаптивных алгоритмов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 43:1 (2003), 149–160  mathnet  mathscinet  zmath; R. V. Efremov, “An a priori estimate for the efficiency of adaptive algorithms for the polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:1 (2003), 146–156