5 citations to https://www.mathnet.ru/rus/znsl6032
  1. V. A. Kozlov, S. A. Nazarov, “Modeling of a False Aneurysm in an Artery: Equilibrium and Development of a Hematoma”, J Math Sci, 239:3 (2019), 309  crossref
  2. В. А. Козлов, С. А. Назаров, “Одномерная модель течения в сочленении тонких каналов в том числе артериальных деревьев”, Матем. сб., 208:8 (2017), 56–105  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. A. Kozlov, S. A. Nazarov, “A one-dimensional model of flow in a junction of thin channels, including arterial trees”, Sb. Math., 208:8 (2017), 1138–1186  crossref  isi
  3. V. A. Kozlov, S. A. Nazarov, “Effective one-dimensional images of arterial trees in the cardiovascular system”, Dokl. Phys., 62:3 (2017), 158–163  crossref  mathscinet  isi  scopus
  4. В. А. Козлов, С. А. Назаров, “Модель мешковидной аневризмы бифуркационного узла артерии”, Математические вопросы теории распространения волн. 47, Зап. научн. сем. ПОМИ, 461, ПОМИ, СПб., 2017, 174–194  mathnet; V. A. Kozlov, S. A. Nazarov, “Model of saccular aneurysm of the bifurcation node of the artery”, J. Math. Sci. (N. Y.), 238:5 (2019), 676–688  crossref
  5. В. А. Козлов, С. А. Назаров, “Условия сопряжения в одномерной модели разветвляющейся артерии с упругими стенками”, Математические вопросы теории распространения волн. 45, Зап. научн. сем. ПОМИ, 438, ПОМИ, СПб., 2015, 138–177  mathnet  mathscinet; V. A. Kozlov, S. A. Nazarov, “Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall”, J. Math. Sci. (N. Y.), 224:1 (2017), 94–118  crossref