4 citations to https://www.mathnet.ru/rus/znsl5250
-
А. Р. Минабутдинов, “Теорема существования предельных кривых для полиномиальных адических автоморфизмов”, Теория представлений, динамические системы, комбинаторные методы. XXVII, Зап. научн. сем. ПОМИ, 448, ПОМИ, СПб., 2016, 177–200 ; A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303
-
А. Р. Минабутдинов, “Случайные отклонения эргодических сумм в автоморфизме Паскаля для меры Лебега”, Теория представлений, динамические системы, комбинаторные методы. XXIV, Зап. научн. сем. ПОМИ, 432, ПОМИ, СПб., 2015, 224–260 ; A. R. Minabutdinov, “Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure”, J. Math. Sci. (N. Y.), 209:6 (2015), 953–978
-
А. А. Лодкин, А. Р. Минабутдинов, “Предельные кривые для автоморфизма Паскаля”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. научн. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 145–183 ; A. A. Lodkin, A. R. Minabutdinov, “Limiting curves for the Pascal adic transformation”, J. Math. Sci. (N. Y.), 216:1 (2016), 94–119
-
А. Р. Минабутдинов, И. Е. Манаев, “Функция Крускала–Катоны, последовательность Конвея, кривая Такаги и автоморфизм Паскаля”, Теория представлений, динамические системы, комбинаторные методы. XXII, Зап. научн. сем. ПОМИ, 411, ПОМИ, СПб., 2013, 135–147 ; A. R. Minabutdinov, I. E. Manaev, “The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic”, J. Math. Sci. (N. Y.), 196:2 (2014), 192–198