8 citations to https://www.mathnet.ru/rus/znsl4865
-
A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, Journal of Mathematical Physics, 63:2 (2022)
-
Б. И. Сулейманов, А. М. Шавлуков, “Интегрируемое уравнение Абеля и асимптотики симметрийных решений уравнения Кортевега-де Вриза”, Уфимск. матем. журн., 13:2 (2021), 104–111 ; B. I. Suleimanov, A. M. Shavlukov, “Integrable Abel equation and asymptotics
of symmetry solutions of Korteweg-de Vries equation”, Ufa Math. J., 13:2 (2021), 99–106
-
Б. И. Сулейманов, “Изомонодромное квантование второго уравнения Пенлеве посредством консервативных гамильтоновых систем с двумя степенями свободы”, Алгебра и анализ, 33:6 (2021), 141–161 ; B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009
-
Б. И. Сулейманов, “Об аналогах функций волновых катастроф, являющихся решениями нелинейных интегрируемых уравнений”, Дифференциальные уравнения, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 163, ВИНИТИ РАН, М., 2019, 81–95
-
Б. И. Сулейманов, “Влияние малой дисперсии на самофокусировку в пространственно одномерном случае”, Письма в ЖЭТФ, 106:6 (2017), 375–380 ; B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Letters, 106:6 (2017), 400–405
-
Б. И. Сулейманов, “«Квантования» высших гамильтоновых аналогов уравнений Пенлеве I и II с двумя степенями свободы”, Функц. анализ и его прил., 48:3 (2014), 52–62 ; B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207
-
Б. И. Сулейманов, “Асимптотика универсального специального решения Гуревича–Питаевского уравнения Кортевега–де Вриза при $|x|\to\infty$”, Тр. ИММ УрО РАН, 18, № 2, 2012, 245–253 ; B. I. Suleimanov, “Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$”, Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 137–145
-
В. Р. Кудашев, Б. И. Сулейманов, “Малоамплитудные дисперсионные колебания на фоне приближения нелинейной
геометрической оптики”, ТМФ, 118:3 (1999), 413–422 ; V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation”, Theoret. and Math. Phys., 118:3 (1999), 325–332