9 citations to https://www.mathnet.ru/rus/znsl3872
  1. Maria Kourou, Oliver Roth, “Geometric versions of Schwarz's lemma for spherically convex functions”, Can. J. Math.-J. Can. Math., 75:6 (2023), 1780  crossref
  2. Kourou M., “Length and Area Estimates For (Hyperbolically) Convex Conformal Mappings”, Comput. Methods Funct. Theory, 18:4 (2018), 723–750  crossref  mathscinet  zmath  isi  scopus
  3. Galatia Cleanthous, Athanasios Georgiadis, “Growth and monotonicity properties for elliptically schlicht functions”, Conform. Geom. Dyn., 20:7 (2016), 116  crossref
  4. Galatia Cleanthous, Athanasios G. Georgiadis, “Upper and Lower Estimates for the Modulus of Bounded Holomorphic Functions”, Complex Anal. Oper. Theory, 10:1 (2016), 205  crossref
  5. Galatia Cleanthous, Athanasios G. Georgiadis, “Multi-point bounds for analytic functions under measure conditions”, Complex Variables and Elliptic Equations, 60:4 (2015), 470  crossref
  6. Betsakos D., “On the Images of Horodisks Under Holomorphic Self-Maps of the Unit Disk”, Arch. Math., 102:1 (2014), 91–99  crossref  mathscinet  zmath  isi  scopus
  7. Betsakos D., Pouliasis S., “Versions of Schwarz's Lemma for Condenser Capacity and Inner Radius”, Can. Math. Bul.-Bul. Can. Math., 56:2 (2013), 241–250  crossref  mathscinet  zmath  isi  scopus
  8. Cleanthous G., “Growth Theorems for Holomorphic Functions Under Geometric Conditions for the Image”, Comput. Methods Funct. Theory, 13:2 (2013), 277–294  crossref  mathscinet  zmath  isi  elib  scopus
  9. Dimitrios Betsakos, “Hyperbolic geometric versions of Schwarz's lemma”, Conform. Geom. Dyn., 17:9 (2013), 119  crossref