29 citations to https://www.mathnet.ru/rus/znsl1489
-
Zhaohu Nie, “Intrinsic construction of invariant functions on simple Lie algebras”, Journal of Algebra, 402 (2014), 158
-
Н. А. Вавилов, А. Ю. Лузгарев, “Группа Шевалле типа $\mathrm E_7$ в 56-мерном представлении”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 5–99 ; N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation”, J. Math. Sci. (N. Y.), 180:3 (2012), 197–251
-
И. М. Певзнер, “Ширина групп типа $\mathrm E_6$ относительно множества корневых элементов. II”, Вопросы теории представлений алгебр и групп. 20, Зап. научн. сем. ПОМИ, 386, ПОМИ, СПб., 2011, 242–264 ; I. M. Pevzner, “Width of groups of type $\mathrm E_6$ with respect to root elements. II”, J. Math. Sci. (N. Y.), 180:3 (2012), 338–350
-
И. М. Певзнер, “Геометрия корневых элементов в группах типа $\mathrm E_6$”, Алгебра и анализ, 23:3 (2011), 261–309 ; I. M. Pevzner, “The geometry of root elements in groups of type $\mathrm E_6$”, St. Petersburg Math. J., 23:3 (2012), 603–635
-
И. М. Певзнер, “Ширина групп типа $\mathrm E_6$ относительно множества корневых элементов. I”, Алгебра и анализ, 23:5 (2011), 155–198 ; I. M. Pevzner, “Width of groups of type $\mathrm E_6$ with respect to root elements. I”, St. Petersburg Math. J., 23:5 (2012), 891–919
-
Н. А. Вавилов, “$\mathrm A_3$-доказательство структурных теорем для групп Шевалле типов $\mathrm E_6$ и $\mathrm E_7$. II. Основная лемма”, Алгебра и анализ, 23:6 (2011), 1–31 ; N. A. Vavilov, “An $\mathrm A_3$-proof of the structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. The main lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942
-
Н. А. Вавилов, “Еще немного исключительной нумерологии”, Вопросы теории представлений алгебр и групп. 19, Зап. научн. сем. ПОМИ, 375, ПОМИ, СПб., 2010, 22–31 ; N. A. Vavilov, “Some more exceptional numerology”, J. Math. Sci. (N. Y.), 171:3 (2010), 317–321
-
Distler J., Garibaldi S., “There is No “Theory of Everything” Inside E-8”, Comm Math Phys, 298:2 (2010), 419–436
-
Н. А. Вавилов, “Строение изотропных редуктивных групп”, Тр. Ин-та матем., 18:1 (2010), 15–27
-
N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Теория представлений, динамические системы, комбинаторные методы. XVII, Зап. научн. сем. ПОМИ, 373, ПОМИ, СПб., 2009, 48–72 ; J. Math. Sci. (N. Y.), 168:3 (2010), 334–348