10 citations to https://www.mathnet.ru/rus/vuu700
-
Gulmirza Kh. Khudaiberganov, Kutlimurot S. Erkinboev, “Some properties of the automorphisms of the classical domain of the first type in the space $\mathbb{C}\left[ m\times n \right]$”, Журн. СФУ. Сер. Матем. и физ., 17:3 (2024), 295–303
-
A. Abdukarimov, U. S. Rakhmonov, F. Z. Turaev, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 030017
-
U. S. Rakhmonov, A. Abdukarimov, Sh. Rajabov, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2612, THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE CONSTRUCTION MECHANICS, HYDRAULICS AND WATER RESOURCES ENGINEERING (CONMECHYDRO 2021 AS), 2023, 030016
-
Uktam S. Rakhmonov, Jonibek Sh. Abdullayev, “On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$”, Журн. СФУ. Сер. Матем. и физ., 15:3 (2022), 329–342
-
U. S. Rakhmonov, Z. K. Matyakubov, “Carleman's formula for the matrix domains of Siegel”, Чебышевский сб., 23:4 (2022), 126–135
-
G. Khudayberganov, J. Sh. Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 31:2 (2021), 296–310
-
Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$”, Журн. СФУ. Сер. Матем. и физ., 14:5 (2021), 589–598
-
J. Sh. Abdullayev, “Estimates the Bergman kernel for classical domains É. Cartan's”, Чебышевский сб., 22:3 (2021), 20–31
-
Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Relationship between the Bergman and Cauchy-Szegö in the domains $\tau ^{+}(n-1)$ и $\Re _{IV}^{n}$”, Журн. СФУ. Сер. Матем. и физ., 13:5 (2020), 559–567
-
Jonibek Sh. Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 3, 88–96