12 citations to https://www.mathnet.ru/rus/vmj473
  1. Souris N.P., “on a Class of Geodesic Orbit Spaces With Abelian Isotropy Subgroup”, Manuscr. Math., 166:1-2 (2021), 101–129  crossref  isi  scopus
  2. Xu M., “Geodesic Orbit Finsler Spaces With K >= 0 and the (Fp) Condition”, Adv. Geom., 21:4 (2021), 551–564  crossref  mathscinet  isi  scopus
  3. Arvanitoyeorgos A., Souris N.P., Statha M., “Geodesic Orbit Metrics in a Class of Homogeneous Bundles Over Real and Complex Stiefel Manifolds”, Geod. Dedic., 215:1 (2021), 31–50  crossref  mathscinet  isi  scopus
  4. Arvanitoyeorgos A., Souris N.P., Statha M., “Geodesic Orbit Metrics in a Class of Homogeneous Bundles Over Quaternionic Stiefel Manifolds”, J. Geom. Phys., 165 (2021), 104223  crossref  mathscinet  isi  scopus
  5. Zhang Sh., Yan Z., “Geodesic Orbit Randers Metrics on Spheres”, Adv. Geom., 21:2 (2021), 273–280  crossref  mathscinet  isi  scopus
  6. M. Xu, “Geodesic orbit spheres and constant curvature in Finsler geometry”, Differ. Geom. Appl., 61 (2018), 197–206  crossref  mathscinet  zmath  isi  scopus
  7. C. S. Gordon, Yu. G. Nikonorov, “Geodesic orbit Riemannian structures on $\mathbf{R}^n$”, J. Geom. Phys., 134 (2018), 235–243  crossref  mathscinet  zmath  isi  scopus
  8. N. P. Souris, “Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules”, Transform. Groups, 23:4 (2018), 1149–1165  crossref  mathscinet  zmath  isi  scopus
  9. H. Chen, Zh. Chen, J. A. Wolf, “Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds”, C. R. Math., 356:8 (2018), 846–851  crossref  mathscinet  zmath  isi  scopus
  10. Z. Dusek, “Homogeneous geodesics and g.o. manifolds”, Note Mat., 38:1 (2018), 1–15  crossref  mathscinet  isi  scopus
1
2
Следующая