11 citations to https://www.mathnet.ru/rus/tvp990
-
Wei Xu, “Asymptotics for exponential functionals of random walks”, Stochastic Processes and their Applications, 165 (2023), 1
-
Discrete Time Branching Processes in Random Environment, 2017, 275
-
В. И. Афанасьев, “О времени достижения высокого уровня невозвратным случайным блужданием в случайной среде”, Теория вероятн. и ее примен., 61:2 (2016), 234–267 ; V. I. Afanasyev, “On the time of attaining a high level by a transient random walk in a random environment”, Theory Probab. Appl., 61:2 (2017), 178–207
-
В. И. Афанасьев, “О невозвратном случайном блуждании в случайной среде”, Дискрет. матем., 28:4 (2016), 6–28 ; V. I. Afanasyev, “On the non-recurrent random walk in a random environment”, Discrete Math. Appl., 28:3 (2018), 139–156
-
Cécile Monthus, “Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality”, J. Stat. Mech., 2015:6 (2015), P06036
-
V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probability, 25:3 (2012), 703–732
-
Cécile Monthus, Thomas Garel, “Random wetting transition on the Cayley tree: a disordered first-order transition with two correlation length exponents”, J. Phys. A: Math. Theor., 42:16 (2009), 165003
-
Cécile Monthus, “Finite-size scaling properties of random transverse-field Ising chains: Comparison between canonical and microcanonical ensembles for the disorder”, Phys. Rev. B, 69:5 (2004)
-
Klaus Fleischmann, Vladimir A. Vatutin, “Reduced subcritical Galton-Watson processes in a random environment”, Advances in Applied Probability, 31:1 (1999), 88
-
Hiroshi Tanaka, Proceedings of the International Congress of Mathematicians, 1995, 1047