11 citations to https://www.mathnet.ru/rus/tvp72
-
В. И. Афанасьев, “О локальном времени остановленного случайного блуждания, достигающего высокого уровня”, Ветвящиеся процессы и смежные вопросы, Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина, Труды МИАН, 316, МИАН, М., 2022, 11–31 ; V. I. Afanasyev, “On the Local Time of a Stopped Random Walk Attaining a High Level”, Proc. Steklov Inst. Math., 316 (2022), 5–25
-
Kortchemski I., “Sub-Exponential Tail Bounds For Conditioned Stable Bienaym,-Galton-Watson Trees”, Probab. Theory Relat. Field, 168:1-2 (2017), 1–40
-
Smadi C., Vatutin V.A., “Reduced Two-Type Decomposable Critical Branching Processes With Possibly Infinite Variance”, Markov Process. Relat. Fields, 22:2 (2016), 311–358
-
С. В. Нагаев, “Вероятностные неравенства для процессов Гальтона–Ватсона”, Теория вероятн. и ее примен., 59:4 (2014), 693–726 ; S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640
-
Lin Sh., “The Harmonic Measure of Balls in Critical Galton-Watson Trees With Infinite Variance Offspring Distribution”, Electron. J. Probab., 19 (2014), 98, 1–35
-
Bertoin J., “On Largest Offspring in a Critical Branching Process with Finite Variance”, J. Appl. Probab., 50:3 (2013), 791–800
-
Jean Bertoin, “On Largest Offspring in a Critical Branching Process with Finite Variance”, J. Appl. Probab., 50:03 (2013), 791
-
Pakes A.G., “Critical Markov branching process limit theorems allowing infinite variance”, Adv. in Appl. Probab., 42:2 (2010), 460–488
-
Anthony G. Pakes, “Critical markov branching process limit theorems allowing infinite variance”, Adv. Appl. Probab., 42:02 (2010), 460
-
David Croydon, Takashi Kumagai, “Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive”, Electron. J. Probab., 13:none (2008)