40 citations to https://www.mathnet.ru/rus/tvp4968
-
Helmut Pruscha, “Parametric inference in Markov branching processes with time-dependent random immigration rate”, Journal of Applied Probability, 22:3 (1985), 503
-
“Резюме докладов, сделанных на заседаниях семинара по теории вероятностей и математической статистике при Киевском государственном университете им. Т. Г. Шевченко (май 1984–декабрь 1984)”, Теория вероятн. и ее примен., 30:3 (1985), 607–617 ; “Summary of reports presented at sessions of the probability and mathematical statistics seminar at the T. G. Shevchenko Kiev state University (May 1984–December 1984)”, Theory Probab. Appl., 30:3 (1986), 644–655
-
Helmut Pruscha, “Parametric inference in Markov branching processes with time-dependent random immigration rate”, J. Appl. Probab., 22:03 (1985), 503
-
И. С. Бадалбаев, А. М. Зубков, “Предельные теоремы для последовательности ветвящихся процессов с иммиграцией”, Теория вероятн. и ее примен., 28:2 (1983), 382–388 ; I. S. Badalbaev, A. M. Zubkov, “Limit theorems for a sequence of branching processes with immigration”, Theory Probab. Appl., 28:2 (1984), 404–409
-
K. Harn, F. W. Steutel, W. Vervaat, “Self-decomposable discrete distributions and branching processes”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 61:1 (1982), 97
-
Anthony G. Pakes, “Limit theorems for the simple branching process allowing immigration, I. The case of finite offspring mean”, Advances in Applied Probability, 11:1 (1979), 31
-
Anthony G. Pakes, “Limit theorems for the simple branching process allowing immigration, I. The case of finite offspring mean”, Adv. Appl. Probab., 11:01 (1979), 31
-
Prem S. Puri, “A limit theorem for point processes by applications”, Journal of Applied Probability, 15:4 (1978), 726
-
Prem S. Puri, “A limit theorem for point processes by applications”, J. Appl. Probab., 15:04 (1978), 726
-
С. В. Нагаев, “Предельная теорема для ветвящихся процессов с иммиграцией”, Теория вероятн. и ее примен., 20:1 (1975), 178–180 ; S. V. Nagaev, “A limit theorem for branching processes with immigration”, Theory Probab. Appl., 20:1 (1975), 176–179