74 citations to https://www.mathnet.ru/rus/tvp4749
-
Loïc Hervé, Sana Louhichi, Françoise Pène, “Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence”, ESAIM: PS, 23 (2019), 584
-
Françoise Pène, “Mixing and decorrelation in infinite measure: The case of the periodic Sinai billiard”, Ann. Inst. H. Poincaré Probab. Statist., 55:1 (2019)
-
Loïc Hervé, Sana Louhichi, Françoise Pène, “Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains”, ESAIM: PS, 23 (2019), 607
-
С. В. Нагаев, “Центральная предельная теорема для цепей Маркова с абстрактным фазовым пространством”, Матем. тр., 21:1 (2018), 73–124 ; S. V. Nagaev, “The central limit theorem for Markov chains with general state space”, Siberian Adv. Math., 28:4 (2018), 265–302
-
D. Dragičević, G. Froyland, C. González-Tokman, S. Vaienti, “A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems”, Commun. Math. Phys., 360:3 (2018), 1121
-
S. V. Nagaev, “The Berry–Esseen Bound for General Markov Chains”, J Math Sci, 234:6 (2018), 829
-
Nasab Yassine, “Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one”, Discrete & Continuous Dynamical Systems - A, 38:1 (2018), 343
-
С. В. Нагаев, “Спектральный метод и центральная предельная теорема для общих цепей Маркова”, Изв. РАН. Сер. матем., 81:6 (2017), 114–157 ; S. V. Nagaev, “The spectral method and the central limit theorem for general Markov chains”, Izv. Math., 81:6 (2017), 1168–1211
-
Zbigniew S. Szewczak, “Berry–Esséen theorem for sample quantiles of asymptotically uncorrelated non reversible Markov chains”, Communications in Statistics - Theory and Methods, 46:8 (2017), 3985
-
Arlotto A. Steele J.M., “A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming”, Math. Oper. Res., 41:4 (2016), 1448–1468