74 citations to https://www.mathnet.ru/rus/tvp4749
  1. Loïc Hervé, Sana Louhichi, Françoise Pène, “Exponential growth of branching processes in a general context of lifetimes and birthtimes dependence”, ESAIM: PS, 23 (2019), 584  crossref
  2. Françoise Pène, “Mixing and decorrelation in infinite measure: The case of the periodic Sinai billiard”, Ann. Inst. H. Poincaré Probab. Statist., 55:1 (2019)  crossref
  3. Loïc Hervé, Sana Louhichi, Françoise Pène, “Multiplicative ergodicity of Laplace transforms for additive functional of Markov chains”, ESAIM: PS, 23 (2019), 607  crossref
  4. С. В. Нагаев, “Центральная предельная теорема для цепей Маркова с абстрактным фазовым пространством”, Матем. тр., 21:1 (2018), 73–124  mathnet  crossref  elib; S. V. Nagaev, “The central limit theorem for Markov chains with general state space”, Siberian Adv. Math., 28:4 (2018), 265–302  crossref
  5. D. Dragičević, G. Froyland, C. González-Tokman, S. Vaienti, “A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems”, Commun. Math. Phys., 360:3 (2018), 1121  crossref
  6. S. V. Nagaev, “The Berry–Esseen Bound for General Markov Chains”, J Math Sci, 234:6 (2018), 829  crossref
  7. Nasab Yassine, “Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one”, Discrete & Continuous Dynamical Systems - A, 38:1 (2018), 343  crossref
  8. С. В. Нагаев, “Спектральный метод и центральная предельная теорема для общих цепей Маркова”, Изв. РАН. Сер. матем., 81:6 (2017), 114–157  mathnet  crossref  zmath  adsnasa  elib; S. V. Nagaev, “The spectral method and the central limit theorem for general Markov chains”, Izv. Math., 81:6 (2017), 1168–1211  crossref  isi
  9. Zbigniew S. Szewczak, “Berry–Esséen theorem for sample quantiles of asymptotically uncorrelated non reversible Markov chains”, Communications in Statistics - Theory and Methods, 46:8 (2017), 3985  crossref
  10. Arlotto A. Steele J.M., “A Central Limit Theorem for Temporally Nonhomogenous Markov Chains with Applications to Dynamic Programming”, Math. Oper. Res., 41:4 (2016), 1448–1468  crossref  mathscinet  zmath  isi  elib  scopus
Предыдущая
1
2
3
4
5
6
7
8
Следующая