11 citations to https://www.mathnet.ru/rus/tvp4433
-
Alexander Nazarov, Yulia Petrova, “L2-small ball asymptotics for Gaussian random functions: A survey”, Probab. Surveys, 20:none (2023)
-
Rozovsky L.V., “Small Deviation Probabilities For Sums of Independent Positive Random Variables”, Vestn. St Petersb. Univ.-Math., 53:3 (2020), 295–307
-
Nazarov A.I. Nikitin Ya.Yu., “On Small Deviation Asymptotics in l-2 of Some Mixed Gaussian Processes”, 6, no. 4, 2018, 55
-
Bongiorno E.G., Goia A., Vieu P., “Evaluating the Complexity of Some Families of Functional Data”, SORT-Stat. Oper. Res. Trans., 42:1 (2018), 27–44
-
Ling N., Vieu Ph., “Nonparametric Modelling For Functional Data: Selected Survey and Tracks For Future”, Statistics, 52:4 (2018), 934–949
-
Ibragimov I.A. Lifshits M.A. Nazarov A.I. Zaporozhets D.N., “On the History of St. Petersburg School of Probability and Mathematical Statistics: II. Random Processes and Dependent Variables”, Vestn. St Petersb. Univ.-Math., 51:3 (2018), 213–236
-
В. И. Богачев, “Распределения многочленов на многомерных и бесконечномерных пространствах с мерами”, УМН, 71:4(430) (2016), 107–154 ; V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749
-
В. Р. Фаталов, “Взвешенные $L^p$-нормы, $p\ge2$, для винеровского процесса: точные асимптотики малых уклонений”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2015, № 2, 17–22 ; V. R. Fatalov, “Weighted $L^p$, $p\ge2$, for a wiener process: Exact asymptoties of small deviations”, Moscow University Mathematics Bulletin, 70:2 (2015), 68–73
-
A. A. Kirichenko, Ya. Yu. Nikitin, “Precise small deviations in $L_2$ of some Gaussian processes appearing in the regression context”, Cent. Eur. J. Math., 12:11 (2014), 1674–1686
-
В. Р. Фаталов, “Гауссовские процессы Орнштейна–Уленбека и Боголюбова: асимптотики малых уклонений для $L^p$-функционалов, $0<p<\infty$”, Пробл. передачи информ., 50:4 (2014), 79–99 ; V. R. Fatalov, “Gaussian Ornstein–Uhlenbeck and Bogoliubov processes: asymptotics of small deviations for $L^p$-functionals, $0<p<\infty$”, Problems Inform. Transmission, 50:4 (2014), 371–389