5 citations to https://www.mathnet.ru/rus/tvp4198
  1. В. И. Афанасьев, “О локальном времени остановленного случайного блуждания, достигающего высокого уровня”, Ветвящиеся процессы и смежные вопросы, Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина, Труды МИАН, 316, МИАН, М., 2022, 11–31  mathnet  crossref; V. I. Afanasyev, “On the Local Time of a Stopped Random Walk Attaining a High Level”, Proc. Steklov Inst. Math., 316 (2022), 5–25  crossref
  2. В. И. Афанасьев, “Функциональная предельная теорема для остановленного случайного блуждания, достигающего высокого уровня”, Дискрет. матем., 28:3 (2016), 3–13  mathnet  crossref  mathscinet  elib; V. I. Afanasyev, “Functional limit theorem for a stopped random walk attaining a high level”, Discrete Math. Appl., 27:5 (2017), 269–276  crossref  isi
  3. В. И. Афанасьев, “Функциональные предельные теоремы для высокоуровневых докритических ветвящихся процессов в случайной среде”, Дискрет. матем., 26:2 (2014), 6–24  mathnet  crossref  mathscinet  elib; V. I. Afanasyev, “Functional limit theorems for high-level subcritical branching processes in random environment”, Discrete Math. Appl., 24:5 (2014), 257–272  crossref
  4. Florian Simatos, Wiley Encyclopedia of Operations Research and Management Science, 2011, 1  crossref
  5. В. И. Афанасьев, “Принцип инвариантности для критического процесса Гальтона–Ватсона, достигающего высокого уровня”, Теория вероятн. и ее примен., 55:4 (2010), 625–643  mathnet  crossref  mathscinet; V. I. Afanasyev, “Invariance principle for the critical Galton–Watson process attaining a high level”, Theory Probab. Appl., 55:4 (2011), 559–574  crossref  isi