13 citations to https://www.mathnet.ru/rus/tvp3948
-
Mi-Hwa Ko, “A central limit theorem for weighted sums of associated random field”, Communications in Statistics - Theory and Methods, 45:1 (2016), 1
-
Alexander Bulinski, Evgeny Spodarev, “Central limit theorems for weakly dependent random fields”, Lect. Notes Math., 2068 (2013), 337–383
-
Alexey Shashkin, “A strong invariance principle for positively or negatively associated random fields”, Statistics & Probability Letters, 78:14 (2008), 2121
-
Raluca M. Balan, “A strong invariance principle for associated random fields”, Ann. Probab., 33:2 (2005)
-
А. П. Шашкин, “Максимальное неравенство для слабо зависимого случайного поля”, Матем. заметки, 75:5 (2004), 773–782 ; A. P. Shashkin, “Maximal Inequality for Weakly Dependent Random Fields”, Math. Notes, 75:5 (2004), 717–725
-
Tae-Sung Kim, Mi-Hwa Ko, Yeon-Sun Yoo, “ESTIMATION OF THE DISTRIBUTION FUNCTION FOR STATIONARY RANDOM FIELDS OF ASSOCIATED PROCESSES”, Communications of the Korean Mathematical Society, 19:1 (2004), 169
-
S. Louhichi, “Moment inequalities for sums of certain dependent random variables”, Теория вероятн. и ее примен., 47:4 (2002), 747–763 ; S. Louhichi, “Moment inequalities for sums of certain dependent random variables”, Theory Probab. Appl., 47:4 (2003), 649–664
-
B.L.S. Prakasa Rao, Isha Dewan, Handbook of Statistics, 19, Stochastic Processes: Theory and Methods, 2001, 693
-
Ю. Ю. Бахтин, “Функциональная центральная предельная теорема для преобразованных решений многомерного уравнения Бюргерса со случайными начальными данными”, Теория вероятн. и ее примен., 46:3 (2001), 427–448 ; Yu. Yu. Bakhtin, “A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data”, Theory Probab. Appl., 46:3 (2002), 387–405
-
Bakhtin Y.Y., “A functional central limit theorem for transformed solutions to the multidimensional Burgers equation with random initial data”, Doklady Mathematics, 61:3 (2000), 417–419