15 citations to https://www.mathnet.ru/rus/tvp3298
-
Douge L., “A Berry-Esseen Theorem For Sample Quantiles Under Association”, Commun. Stat.-Theory Methods, 51:18 (2022), 6515–6528
-
Adrian Röllin, “KOLMOGOROV BOUNDS FOR THE NORMAL APPROXIMATION OF THE NUMBER OF TRIANGLES IN THE ERDŐS–RÉNYI RANDOM GRAPH”, Prob. Eng. Inf. Sci., 36:3 (2022), 747
-
Feray V., Meliot P.-L., Nikeghbali A., “Mod-Phi Convergence, II: Estimates on the Speed of Convergence”, Seminaire de Probabilites l, Lect. Notes Math., Lecture Notes in Mathematics, 2252, eds. DonatiMartin C., Lejay A., Rouault A., Springer International Publishing Ag, 2019, 405–477
-
Wiroonsri N., “Normal Approximation For Associated Point Processes Via Stein'S Method With Applications to Determinantal Point Processes”, J. Math. Anal. Appl., 480:1 (2019), UNSP 123396
-
Wiroonsri N., “Stein'S Method For Negatively Associated Random Variables With Applications to Second-Order Stationary Random Fields”, J. Appl. Probab., 55:1 (2018), 196–215
-
Goldstein L., Wiroonsri N., “Stein'S Method For Positively Associated Random Variables With Applications to the Ising and Voter Models, Bond Percolation, and Contact Process”, Ann. Inst. Henri Poincare-Probab. Stat., 54:1 (2018), 385–421
-
B.L.S. Prakasa Rao, M. Sreehari, “Random central limit theorem for associated random variables and the order of approximation”, Statistics & Probability Letters, 111 (2016), 1
-
Alexey Shashkin, Advances in Data Analysis, 2010, 151
-
Guang-hui Cai, Jian-Feng Wang, “Uniform bounds in normal approximation under negatively associated random fields”, Statistics & Probability Letters, 79:2 (2009), 215
-
Raluca M. Balan, “A strong invariance principle for associated random fields”, Ann. Probab., 33:2 (2005)