15 citations to https://www.mathnet.ru/rus/tvp3298
  1. Douge L., “A Berry-Esseen Theorem For Sample Quantiles Under Association”, Commun. Stat.-Theory Methods, 51:18 (2022), 6515–6528  crossref  isi
  2. Adrian Röllin, “KOLMOGOROV BOUNDS FOR THE NORMAL APPROXIMATION OF THE NUMBER OF TRIANGLES IN THE ERDŐS–RÉNYI RANDOM GRAPH”, Prob. Eng. Inf. Sci., 36:3 (2022), 747  crossref
  3. Feray V., Meliot P.-L., Nikeghbali A., “Mod-Phi Convergence, II: Estimates on the Speed of Convergence”, Seminaire de Probabilites l, Lect. Notes Math., Lecture Notes in Mathematics, 2252, eds. DonatiMartin C., Lejay A., Rouault A., Springer International Publishing Ag, 2019, 405–477  crossref  isi
  4. Wiroonsri N., “Normal Approximation For Associated Point Processes Via Stein'S Method With Applications to Determinantal Point Processes”, J. Math. Anal. Appl., 480:1 (2019), UNSP 123396  crossref  isi
  5. Wiroonsri N., “Stein'S Method For Negatively Associated Random Variables With Applications to Second-Order Stationary Random Fields”, J. Appl. Probab., 55:1 (2018), 196–215  crossref  isi
  6. Goldstein L., Wiroonsri N., “Stein'S Method For Positively Associated Random Variables With Applications to the Ising and Voter Models, Bond Percolation, and Contact Process”, Ann. Inst. Henri Poincare-Probab. Stat., 54:1 (2018), 385–421  crossref  isi
  7. B.L.S. Prakasa Rao, M. Sreehari, “Random central limit theorem for associated random variables and the order of approximation”, Statistics & Probability Letters, 111 (2016), 1  crossref
  8. Alexey Shashkin, Advances in Data Analysis, 2010, 151  crossref
  9. Guang-hui Cai, Jian-Feng Wang, “Uniform bounds in normal approximation under negatively associated random fields”, Statistics & Probability Letters, 79:2 (2009), 215  crossref
  10. Raluca M. Balan, “A strong invariance principle for associated random fields”, Ann. Probab., 33:2 (2005)  crossref
1
2
Следующая