21 citations to https://www.mathnet.ru/rus/tvp3068
-
Amosov G.G., “On Capacity of Quantum Channels Generated By Irreducible Projective Unitary Representations of Finite Groups”, Quantum Inf. Process., 21:2 (2022), 81
-
Beigi S., “Improved Quantum Hypercontractivity Inequality For the Qubit Depolarizing Channel”, J. Math. Phys., 62:12 (2021), 122201
-
Sergeev I., “Generalizations of 2-Dimensional Diagonal Quantum Channels With Constant Frobenius Norm”, Rep. Math. Phys., 83:3 (2019), 349–372
-
Fukuda M., Gour G., “Additive Bounds of Minimum Output Entropies for Unital Channels and an Exact Qubit Formula”, IEEE Trans. Inf. Theory, 63:3 (2017), 1818–1828
-
Filippov S.N., Magadov K.Yu., Jivulescu M.A., “Absolutely Separating Quantum Maps and Channels”, New J. Phys., 19 (2017), 083010
-
Montanaro A., “Weak Multiplicativity for Random Quantum Channels”, Commun. Math. Phys., 319:2 (2013), 535–555
-
Müller M., “Convex trace functions on quantum channels and the additivity conjecture”, Phys. Rev. A, 79:5 (2009), 052332, 9 pp.
-
Audenaert K.M.R., “A note on the $p\to q$ norms of 2-positive maps”, Linear Algebra Appl., 430:4 (2009), 1436–1440
-
Г. Г. Амосов, “Замечание о гипотезе аддитивности для квантового деполяризующего
канала”, Пробл. передачи информ., 42:2 (2006), 3–11 ; G. G. Amosov, “Remark on the Additivity Conjecture for a Quantum Depolarizing
Channel”, Problems Inform. Transmission, 42:2 (2006), 69–76
-
А. С. Холево, “Мультипликативность $p$-норм вполне положительных отображений и проблема аддитивности в квантовой теории информации”, УМН, 61:2(368) (2006), 113–152 ; A. S. Holevo, “Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory”, Russian Math. Surveys, 61:2 (2006), 301–339