62 citations to https://www.mathnet.ru/rus/tvp2755
  1. Peter Braunsteins, Sophie Hautphenne, James Kerlidis, “Linking population-size-dependent and controlled branching processes”, Stochastic Processes and their Applications, 181 (2025), 104556  crossref
  2. Jiawei Liu, “A scaling limit of controlled branching processes”, Statistics & Probability Letters, 208 (2024), 110081  crossref
  3. Mátyás Barczy, Miguel González, Pedro Martín-Chávez, Inés del Puerto, “Diffusion approximation of critical controlled multi-type branching processes”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 118:3 (2024)  crossref
  4. В. И. Винокуров, “Предельный вид стационарного распределения одного критического регулируемого ветвящегося процесса с иммиграцией”, Дискрет. матем., 35:3 (2023), 5–19  mathnet  crossref; V. I. Vinokurov, “Limit theorem for stationary distribution of a critical controlled branching process with immigration”, Discrete Math. Appl., 33:5 (2023), 325–337  crossref
  5. Sivaprasad Madhira, Shailaja Deshmukh, Introduction to Stochastic Processes Using R, 2023, 273  crossref
  6. Min Ren, Guanghui Zhang, “Some properties of branching processes with random control functions and affected by viral infectivity in random environments”, Adv Cont Discr Mod, 2023:1 (2023)  crossref
  7. F. Thomas Bruss, “Galton–Watson processes and their role as building blocks for branching processes”, Теория вероятн. и ее примен., 67:1 (2022), 177–192  mathnet  crossref  mathscinet  zmath; Theory Probab. Appl., 67:1 (2022), 141–153  crossref
  8. Hautphenne S. Li M., “A Fluid Approach to Total-Progeny-Dependent Birth-and-Death Processes”, Stoch. Models, 2022  crossref  isi
  9. Georg Braun, “On supercritical branching processes with emigration”, J. Appl. Probab., 59:3 (2022), 734  crossref
  10. NOËL BONNEUIL, “OPTIMAL CONTROL OF GENETIC DIVERSITY IN THE MORAN MODEL WITH POPULATION GROWTH”, J. Biol. Syst., 30:01 (2022), 27  crossref
1
2
3
4
5
6
7
Следующая