23 citations to https://www.mathnet.ru/rus/tmf955
-
Дянь-Лоу Ду, Сюэ Ван, “Новые конечномерные гамильтоновы системы со смешанной пуассоновой структурой для уравнения КдФ”, ТМФ, 211:3 (2022), 361–374 ; Dianlou Du, Xue Wang, “A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation”, Theoret. and Math. Phys., 211:3 (2022), 745–757
-
Dubrovsky V.G., Topovsky V A., “Multi-Soliton Solutions of Kp Equation With Integrable Boundary Via Partial Differential -Dressing Method”, Physica D, 428 (2021), 133025
-
Dubrovsky V.G., Topovsky V A., “Multi-Lump Solutions of Kp Equation With Integrable Boundary Via Partial Derivative-Dressing Method”, Physica D, 414 (2020), 132740
-
Habibullin I.T., Khakimova A.R., “On a Method For Constructing the Lax pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206
-
Ignatyev M.Yu., “On the Solutions of Some Boundary Value Problems For the General KdV Equation”, Math. Phys. Anal. Geom., 17:3-4 (2014), 493–509
-
М. Ю. Игнатьев, “О решениях некоторых краевых задач для общего уравнения КдФ”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 13:1(2) (2013), 46–49
-
Ignatyev M.Yu., “On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis”, Math. Phys. Anal. Geom., 16:1 (2013), 19–47
-
Ignatyev M.Yu., “On Solution of the Integrable Initial Boundary Value Problem for KdV Equation on the Semi-Axis”, Math. Phys. Anal. Geom., 16:4 (2013), 381–392
-
В. Л. Верещагин, “Явные решения интегрируемой граничной задачи для двумерной цепочки Тоды”, ТМФ, 165:1 (2010), 25–31 ; V. L. Vereshchagin, “Explicit solutions of an integrable boundary value problem for the two-dimensional Toda lattice”, Theoret. and Math. Phys., 165:1 (2010), 1256–1261
-
Vereschagin V.L., “Integrable boundary problems for 2D Toda lattice”, Phys Lett A, 374:46 (2010), 4653–4657