8 citations to https://www.mathnet.ru/rus/tmf9349
  1. M. M. Malamud, V. V. Marchenko, “On Kernels of Invariant Schrödinger Operators with Point Interactions. Grinevich–Novikov Conjecture”, Dokl. Math., 109:2 (2024), 125  crossref
  2. M. M. Malamud, V. V. Marchenko, “On kernels of invariant Schrödinger operators with point interactions. Grinevich–Novikov problem”, Doklady Rossijskoj akademii nauk. Matematika, informatika, processy upravleniâ, 516 (2024), 31  crossref
  3. П. Г. Гриневич, Р. Г. Новиков, “Спектральное неравенство для уравнения Шрёдингера с многоточечным потенциалом”, УМН, 77:6(468) (2022), 69–76  mathnet  crossref  mathscinet  zmath  adsnasa; P. G. Grinevich, R. G. Novikov, “Spectral inequality for Schrödinger's equation with multipoint potential”, Russian Math. Surveys, 77:6 (2022), 1021–1028  crossref  isi
  4. W. Xie, W. Deng, J. Hu, Y. Gai, X. Li, J. Zhang, D. Long, S. Qiao, F. Jiang, “Construction of bimetallic FeCo-SA/DABCO nanosheets by modulating the electronic structure for improved electrocatalytic oxygen evolution”, CrystEngComm, 24:35 (2022), 6239  crossref
  5. P. G. Grinevich, R. G. Novikov, “Transmission eigenvalues for multipoint scatterers”, Eurasian J. Math. Comput. Appl., 9:4 (2021), 17–25  crossref  isi
  6. Raffaele Scandone, Springer INdAM Series, 42, Mathematical Challenges of Zero-Range Physics, 2021, 149  crossref
  7. R. G. Novikov, “Inverse scattering for the Bethe-Peierls model”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 52–55  isi
  8. R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian Journal of Mathematical and Computer Applications, 6:1 (2018), 52–55  mathnet  crossref