8 citations to https://www.mathnet.ru/rus/tmf9210
-
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53
-
Sh.-K. Yao, P. Liu, X.-Yu. Jia, “On super yangian covariance of the triple product system”, Adv. Appl. Clifford Algebr., 29:1 (2019), UNSP 15
-
N. Gromov, F. Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energy Phys., 2018, no. 9, 085
-
S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech.-Theory Exp., 2018, 093103
-
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A-Math. Theor., 50:3 (2017), 034004
-
N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New construction of eigenstates and separation of variables for $\mathrm{SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017, no. 9, 111, front matter+39 pp.
-
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{g}\mathfrak{l}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311
-
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{g}\mathfrak{l}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula”, J. Phys. A-Math. Theor., 49:45 (2016), 454005, 28 pp.