19 citations to https://www.mathnet.ru/rus/tmf8663
-
В. Э. Адлер, “3D-совместность негативных потоков”, ТМФ, 221:2 (2024), 280–297 ; V. E. Adler, “3D consistency of negative flows”, Theoret. and Math. Phys., 221:2 (2024), 1836–1851
-
Р. Н. Гарифуллин, “Классификация полудискретных уравнений гиперболического типа. Случай симметрий третьего порядка”, ТМФ, 217:2 (2023), 404–415 ; R. N. Garifullin, “Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries”, Theoret. and Math. Phys., 217:2 (2023), 1767–1776
-
Adler V.E., “Painleve Type Reductions For the Non-Abelian Volterra Lattices”, J. Phys. A-Math. Theor., 54:3 (2021), 035204
-
G. Gubbiotti, “Algebraic entropy of a class of five-point differential-difference equations”, Symmetry-Basel, 11:3 (2019), 432
-
R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonlinear Math. Phys., 26:3 (2019), 333–357
-
Р. Н. Гарифуллин, Р. И. Ямилов, “Необычная серия автономных дискретных интегрируемых уравнений на квадратной решетке”, ТМФ, 200:1 (2019), 50–71 ; R. N. Garifullin, R. I. Yamilov, “An unusual series of autonomous discrete integrable equations on a square lattice”, Theoret. and Math. Phys., 200:1 (2019), 966–984
-
R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations II”, J. Phys. A-Math. Theor., 51:6 (2018), 065204
-
В. Э. Адлер, “Интегрируемые семиточечные дискретные уравнения и эволюционные цепочки второго порядка”, ТМФ, 195:1 (2018), 27–43 ; V. E. Adler, “Integrable seven-point discrete equations and second-order evolution chains”, Theoret. and Math. Phys., 195:1 (2018), 513–528
-
I. T. Habibullin, A. R. Khakimova, “On the recursion operators for integrable equations”, J. Phys. A-Math. Theor., 51:42 (2018), 425202
-
P. Xenitidis, “Determining the symmetries of difference equations”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 474:2219 (2018), 20180340