16 citations to https://www.mathnet.ru/rus/tmf8607
-
S .Yu. Dobrokhotov, V. A. Kalinichenko, D. S. Minenkov, V. E. Nazaikinskii, “Asymptotics of Long Standing Waves in One-Dimensional Basins with Shallow Coasts: Theory and Experiment”, Прикладная математика и механика, 87:2 (2023), 157
-
D.S. Minenkov, M.M. Votiakova, “Asymptotics of Long Nonlinear Propagating Waves in a One-Dimensional Basin with Gentle Shores”, Russ. J. Math. Phys., 30:4 (2023), 621
-
S. Yu. Dobrokhotov, V. A. Kalinichenko, D. S. Minenkov, V. E. Nazaikinskii, “Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment”, Fluid Dyn, 58:7 (2023), 1213
-
А. В. Аксенов, А. Д. Полянин, “Обзор методов построения точных решений уравнений математической физики, основанных на использовании более простых решений”, ТМФ, 211:2 (2022), 149–180 ; A. V. Aksenov, A. D. Polyanin, “Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions”, Theoret. and Math. Phys., 211:2 (2022), 567–594
-
Purnima Satapathy, T. Raja Sekhar, “Analytic solutions for (2+1)-dimensional shallow water equations with flat bottom through Lie symmetry approach”, Eur. Phys. J. Plus, 137:10 (2022)
-
Evgeniy I. Kaptsov, Vladimir A. Dorodnitsyn, Sergey V. Meleshko, “Conservative invariant finite‐difference schemes for the modified shallow water equations in Lagrangian coordinates”, Stud Appl Math, 149:3 (2022), 729
-
Churilov S.M., Stepanyants Yu.A., “Reflectionless Wave Propagation on Shallow Water With Variable Bathymetry and Current”, J. Fluid Mech., 931 (2021), A15
-
А. В. Баев, “О решении одной обратной задачи для уравнений мелкой воды в бассейне с переменной глубиной”, Матем. моделирование, 32:11 (2020), 3–15 ; A. V. Baev, “On the solution of an inverse problem for equations of shallow water in a pool with variable depth”, Math. Models Comput. Simul., 13:4 (2021), 543–551
-
Bihlo A., Popovych R.O., “Zeroth-Order Conservation Laws of Two-Dimensional Shallow Water Equations With Variable Bottom Topography”, Stud. Appl. Math., 145:2 (2020), 291–321
-
Bihlo A., Poltavets N., Popovych R.O., “Lie Symmetries of Two-Dimensional Shallow Water Equations With Variable Bottom Topography”, Chaos, 30:7 (2020), 073132