79 citations to https://www.mathnet.ru/rus/tmf808
  1. Giorgio Gubbiotti, Christian Scimiterna, Ravil I. Yamilov, “Darboux Integrability of Trapezoidal $H^{4}$ and $H^{6}$ Families of Lattice Equations II: General Solutions”, SIGMA, 14 (2018), 008, 51 pp.  mathnet  crossref
  2. Zheltukhin K., Zheltukhina N., “On the Discretization of Laine Equations”, J. Nonlinear Math. Phys., 25:1 (2018), 166–177  crossref  mathscinet  isi  scopus  scopus
  3. Д. Леви, Л. Мартина, П. Винтерниц, “Конформно-инвариантное эллиптическое уравнение Лиувилля и его дискретизация, сохраняющая симметрию”, ТМФ, 196:3 (2018), 419–433  mathnet  crossref  mathscinet  adsnasa  elib; D. Levi, L. Martina, P. Winternitz, “Conformally invariant elliptic Liouville equation and its symmetry-preserving discretization”, Theoret. and Math. Phys., 196:3 (2018), 1307–1319  crossref  isi
  4. Startsev S.Ya., “Relationships Between Symmetries Depending on Arbitrary Functions and Integrals of Discrete Equations”, J. Phys. A-Math. Theor., 50:50 (2017), 50LT01  crossref  mathscinet  zmath  isi  scopus  scopus
  5. Zheltukhin K., Zheltukhina N., Bilen E., “On a Class of Darboux-Integrable Semidiscrete Equations”, Adv. Differ. Equ., 2017, 182  crossref  mathscinet  isi  scopus  scopus
  6. Gubbiotti G., Yamilov R.I., “Darboux Integrability of Trapezoidal H-4 and H-4 Families of Lattice Equations i: First Integrals”, J. Phys. A-Math. Theor., 50:34 (2017), 345205, 1–26  crossref  mathscinet  isi  scopus  scopus
  7. Gubbiotti G., “Integrability of Difference Equations Through Algebraic Entropy and Generalized Symmetries”, Symmetries and Integrability of Difference Equations, Crm Series in Mathematical Physics, ed. Levi D. Rebelo R. Winternitz P., Springer, 2017, 75–151  crossref  isi
  8. Dinh T. Tran, Peter H. van der Kamp, G. R. W. Quispel, “Poisson Brackets of Mappings Obtained as $(q, -p)$ Reductions of Lattice Equations”, Regul. Chaotic Dyn., 21:6 (2016), 682–696  mathnet  crossref  mathscinet
  9. Demskoi D.K., Tran D.T., “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991  crossref  mathscinet  zmath  isi  elib  scopus
  10. Zheltukhin K., Zheltukhina N., “Semi-discrete hyperbolic equations admitting five dimensional characteristic x -ring”, J. Nonlinear Math. Phys., 23:3 (2016), 351–367  crossref  mathscinet  isi  elib  scopus
Предыдущая
1
2
3
4
5
6
7
8
Следующая