10 citations to https://www.mathnet.ru/rus/tmf801
-
Gharakhloo R. Its A.R. Kozlowski K.K., “Riemann-Hilbert Approach to a Generalized Sine Kernel”, Lett. Math. Phys., 110:2 (2020), 297–325
-
Kozlowski K.K., “On the Thermodynamic Limit of Form Factor Expansions of Dynamical Correlation Functions in the Massless Regime of the Xxz Spin 1/2 Chain”, J. Math. Phys., 59:9, SI (2018), 091408
-
Kozlowski K.K., “Large-Distance and Long-Time Asymptotic Behavior of the Reduced Density Matrix in the Non-Linear Schrodinger Model”, Ann. Henri Poincare, 16:2 (2015), 437–534
-
Н. А. Славнов, “Асимптотические разложения для корреляционных функций одномерных бозонов”, ТМФ, 174:1 (2013), 125–139 ; N. A. Slavnov, “Asymptotic expansions for correlation functions of one-dimensional bosons”, Theoret. and Math. Phys., 174:1 (2013), 109–121
-
Patu O.I. Kluemper A., “Correlation Lengths of the Repulsive One-Dimensional Bose Gas”, Phys. Rev. A, 88:3 (2013), 033623
-
Kitanine N. Kozlowski K.K. Maillet J.M. Slavnov N.A. Terras V., “Form Factor Approach to Dynamical Correlation Functions in Critical Models”, J. Stat. Mech.-Theory Exp., 2012, P09001
-
Kozlowski K.K., Maillet J.M., Slavnov N.A., “Correlation functions for one-dimensional bosons at low temperature”, J Stat Mech Theory Exp, 2011, P03019
-
Kozlowski K.K., Maillet J.M., Slavnov N.A., “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J Stat Mech Theory Exp, 2011, P03018
-
Caux, JS, “One-particle dynamical correlations in the one-dimensional Bose gas”, Journal of Statistical Mechanics-Theory and Experiment, 2007, P01008
-
Р. К. Буллоу, Н. М. Боголюбов, В. С. Капитонов, К. Л. Малышев, Й. Тимонен, А. В. Рыбин, Г. Г. Варзугин, М. Линдберг, “Квантовые интегрируемые и неинтегрируемые модели, основанные на нелинейном уравнении Шредингера, для реализуемой конденсации Бозе–Эйнштейна в размерности $d+1$ $(d=1,2,3)$”, ТМФ, 134:1 (2003), 55–73 ; R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, Theoret. and Math. Phys., 134:1 (2003), 47–61