10 citations to https://www.mathnet.ru/rus/tmf755
-
Victor R. Krym, “Comparison of basic equations of the Kaluza–Klein theory with the nonholonomic model of space–time of the sub-Lorentzian geometry”, Int. J. Mod. Phys. A, 38:09n10 (2023)
-
Sergey Galaev, Evgeny Kokin, Topology - Recent Advances and Applications [Working Title], 2023
-
V. R. Krym, “The Schouten Curvature Tensor and the Jacobi Equation in Sub-Riemannian Geometry”, J Math Sci, 255:2 (2021), 184
-
В. Р. Крым, “Тензор кривизны Схоутена и уравнение Якоби в субримановой геометрии”, Теория представлений, динамические системы, комбинаторные методы. XXXI, Зап. научн. сем. ПОМИ, 498, ПОМИ, СПб., 2020, 121–134
-
V. R. Krym, “Jacobi fields for a nonholonomic distribution”, Vestnik St.Petersb. Univ.Math., 43:4 (2010), 232
-
V. R. Krym, N. N. Petrov, “Principal bundles and topological quantization of charges”, Vestnik St.Petersb. Univ.Math., 42:1 (2009), 7
-
V. R. Krym, “Nonholonomous geodesics as solutions to Euler-Lagrange integral equations and the differential of the exponential mapping”, Vestnik St.Petersb. Univ.Math., 42:3 (2009), 175
-
V. R. Krym, “The Euler-Lagrange method in Pontryagin's formulation”, Vestnik St.Petersb. Univ.Math., 42:2 (2009), 106
-
V. R. Krym, N. N. Petrov, “The curvature tensor and the einstein equations for a four-dimensional nonholonomic distribution”, Vestnik St.Petersb. Univ.Math., 41:3 (2008), 256
-
V. R. Krym, N. N. Petrov, “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space”, Vestnik St.Petersb. Univ.Math., 40:1 (2007), 52