12 citations to https://www.mathnet.ru/rus/tmf728
-
Przanowski M., Tosiek J., Turrubiates F.J., “The Weyl - Wigner - Moyal Formalism on a Discrete Phase Space. II. the Photon Wigner Function”, Fortschritte Phys.-Prog. Phys., 69:1 (2021), 2000061, 2000061
-
Filinov V. Larkin A. Fortov V., “Screening Properties of Quark-Gluon Plasma Obtained From Distribution and Correlation Functions of the Constituent Quasiparticle Model”, Phys. Rev. C, 101:2 (2020), 025202
-
Karlovets D., “On Wigner Function of a Vortex Electron”, J. Phys. A-Math. Theor., 52:5 (2019), 05LT01
-
А. С. Ларкин, В. С. Филинов, “Моделирование методом Монте-Карло термодинамических свойств водородной плазмы с помощью функции Вигнера”, ТВТ, 57:5 (2019), 651–659 ; A. S. Larkin, V. S. Filinov, “Monte Carlo simulation of the thermodynamic properties of hydrogen plasma with the Wigner function”, High Temperature, 57:5 (2019), 609–616
-
Kowalski K., Rembielinski J., Gazeau J.-P., “On the Coherent States For a Relativistic Scalar Particle”, Ann. Phys., 399 (2018), 204–223
-
Karlovets D.V., “Scattering of wave packets with phases”, J. High Energy Phys., 2017, no. 3, 049
-
Kowalski K., Rembielinski J., “The Wigner function in the relativistic quantum mechanics”, Ann. Phys., 375 (2016), 1–15
-
О. И. Завьялов, “О нелинейных представлениях группы Лоренца в квантовой теории поля”, ТМФ, 127:1 (2001), 75–89 ; O. I. Zavialov, “Nonlinear Representations of the Lorentz Group in Quantum Field Theory”, Theoret. and Math. Phys., 127:1 (2001), 471–482
-
О. И. Завьялов, “О механизме появления нелинейных представлений группы Лоренца в квантовой теории поля”, ТМФ, 128:3 (2001), 403–408 ; O. I. Zavialov, “On the Mechanism for Nonlinear Representations of the Lorentz Group Arising in Quantum Field Theory”, Theoret. and Math. Phys., 128:3 (2001), 1176–1180
-
Segev B., “Causality and propagation in the Wigner, Husimi, Glauber, and Kirkwood phase-space representations”, Phys. Rev. A, 63:5 (2001), 052114