128 citations to https://www.mathnet.ru/rus/tmf675
-
Alexander V. Mikhailov, Jing P. Wang, Encyclopedia of Mathematical Physics, 2025, 162
-
Xue Wang, Dianlou Du, “A nonlocal finite-dimensional integrable system related to the nonlocal nonlinear Schrödinger equation hierarchy”, Int. J. Geom. Methods Mod. Phys., 21:02 (2024)
-
А. Й. Тефера, Да-Цзюнь Чжан, “Неизоспектральные уравнения Кадомцева–Петвиашвили, получающиеся с помощью подхода матриц Коши”, ТМФ, 221:1 (2024), 51–69 ; A. Y. Tefera, Da-jun Zhang, “Nonisospectral Kadomtsev–Petviashvili equations from the Cauchy matrix approach”, Theoret. and Math. Phys., 221:1 (2024), 1633–1649
-
И. Т. Хабибуллин, А. Р. Хакимова, “О классификации нелинейных интегрируемых трехмерных цепочек при помощи характеристических алгебр Ли”, ТМФ, 217:1 (2023), 142–178 ; I. T. Habibullin, A. R. Khakimova, “On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras”, Theoret. and Math. Phys., 217:1 (2023), 1541–1573
-
Дянь-Лоу Ду, Сюэ Ван, “Новые конечномерные гамильтоновы системы со смешанной пуассоновой структурой для уравнения КдФ”, ТМФ, 211:3 (2022), 361–374 ; Dianlou Du, Xue Wang, “A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation”, Theoret. and Math. Phys., 211:3 (2022), 745–757
-
Filipe Kelmer, Keti Tenenblat, “On a class of systems of hyperbolic equations describing pseudo-spherical or spherical surfaces”, Journal of Differential Equations, 339 (2022), 372
-
Adler V.E., “Painleve Type Reductions For the Non-Abelian Volterra Lattices”, J. Phys. A-Math. Theor., 54:3 (2021), 035204
-
Gazizov R.K., Lukashchuk S.Yu., “Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation”, Mathematics, 9:3 (2021), 216
-
V. S. Gerdjikov, “On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$”, Уфимск. матем. журн., 13:2 (2021), 121–140 ; Ufa Math. J., 13:2 (2021), 115–134
-
Adler V.E., Sokolov V.V., “Non-Abelian Evolution Systems With Conservation Laws”, Math. Phys. Anal. Geom., 24:1 (2021), 7