9 citations to https://www.mathnet.ru/rus/tmf6649
-
R. Ivanov, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2968, THE 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN INFORMATION SYSTEMS (CIIS 2022): Intelligent and Resilient Digital Innovations for Sustainable Living, 2023, 020002
-
В. С. Герджиков, Г. Г. Граховски, А. А. Стефанов, “Вещественные гамильтоновы формы аффинных теорий поля Тоды: спектральные аспекты”, ТМФ, 212:2 (2022), 190–212 ; V. S. Gerdjikov, G. G. Grahovski, A. A. Stefanov, “Real Hamiltonian forms of affine Toda field theories: Spectral aspects”, Theoret. and Math. Phys., 212:2 (2022), 1053–1072
-
O. Dafounansou, D.C. Mbah, F.L. Taussé Kamdoum, M.G. Kwato Njock, “Darboux transformations for the multicomponent vector solitons and rogue waves of the multiple coupled Kundu–Eckhaus equations”, Wave Motion, 114 (2022), 103041
-
Valchev I T., Yanovski A.B., “Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions”, J. Nonlinear Math. Phys., 25:3 (2018), 442–461
-
Г. Г. Граховски, А. Ж. Мохаммед, Х. Сусанто, “Нелокальные редукции уравнения Абловица–Ладика”, ТМФ, 197:1 (2018), 24–44 ; G. G. Grahovski, A. Mohammed, H. Susanto, “Nonlocal reductions of the Ablowitz–Ladik equation”, Theoret. and Math. Phys., 197:1 (2018), 1412–1429
-
Г. Г. Граховски, Д. И. Мустафа, Х. Сусанто, “О нелокальных редукциях многокомпонентного нелинейного уравнения Шредингера в симметрических пространствах”, ТМФ, 197:1 (2018), 45–67 ; G. G. Grahovski, A. J. Mustafa, H. Susanto, “Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces”, Theoret. and Math. Phys., 197:1 (2018), 1430–1450
-
Yanovski A.B., “Spectral Theory of Sl(3, C) Auxiliary Linear Problem With Z(2) X Z(2) X Z(2) Reduction of Mikhailov Type”, Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence, 681, eds. Georgiev K., Todorov M., Georgiev I., Springer International Publishing Ag, 2017, 251–262
-
Valchev T., “on Mikhailov'S Reduction Group”, Phys. Lett. A, 379:34-35 (2015), 1877–1880
-
Grahovski G.G., “The generalised Zakharov-Shabat system and the gauge group action”, J. Math. Phys., 53:7 (2012), 073512, 13 pp.