32 citations to https://www.mathnet.ru/rus/tmf6614
  1. A A Sheykin, M V Markov, Ya A Fedulov, S A Paston, “Explicit isometric embeddings of pseudo-Riemannian manifolds: ideas and applications”, J. Phys.: Conf. Ser., 1697:1 (2020), 012077  crossref
  2. A D Kapustin, S A Paston, “Explicit isometric embeddings of black holes geometry with non-singular matter distribution”, J. Phys.: Conf. Ser., 1697:1 (2020), 012082  crossref
  3. Sheykin A., Solovyev D., Paston S., “Global Embeddings of Btz and Schwarzschild-Ads Type Black Holes in a Flat Space”, Symmetry-Basel, 11:7 (2019), 841  crossref  isi  scopus
  4. Grad D.A., Ilin R.V., Paston S.A., Sheykin A.A., “Gravitational Energy in the Framework of Embedding and Splitting Theories”, Int. J. Mod. Phys. D, 27:2 (2018), 1750188  crossref  mathscinet  isi  scopus
  5. Paston S.A., Sheykin A.A., “Embedding Theory as New Geometrical Mimetic Gravity”, Eur. Phys. J. C, 78:12 (2018), 989  crossref  isi  scopus
  6. Paston S.A., Semenova E.N., Franke V.A., Sheykin A.A., “Algebra of implicitly defined constraints for gravity as the general form of embedding theory”, Gravit. Cosmol., 23:1 (2017), 1–7  crossref  mathscinet  zmath  isi  scopus
  7. Mielke E.W., “Color Geometrodynamics”: Mielke, EW, Geometrodynamics of Gauge Fields: on the Geometry of Yang-Mills and Gravitational Gauge Theories, 2Nd Edition, Mathematical Physics Studies, Springer International Publishing Ag, 2017, 329–345  crossref  mathscinet  isi
  8. Khatsymovsky V.M., “First-Order Discrete Faddeev Gravity At Strongly Varying Fields”, Mod. Phys. Lett. A, 32:35 (2017), 1750181  crossref  mathscinet  zmath  isi  scopus
  9. Khatsymovsky V.M., “Spectrum of area in the Faddeev formulation of gravity”, Mod. Phys. Lett. A, 31:19 (2016), 1650114  crossref  mathscinet  zmath  isi  elib  scopus
  10. Khatsymovsky V.M., “First-Order Minisuperspace Model For the Faddeev Formulation of Gravity”, Mod. Phys. Lett. A, 30:32 (2015), 1550174  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
Предыдущая
1
2
3
4
Следующая