20 citations to https://www.mathnet.ru/rus/tmf6595
  1. И. Т. Хабибуллин, А. Р. Хакимова, “Инвариантные многообразия интегрируемых уравнений гиперболического типа и их приложения”, Комплексный анализ. Математическая физика, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 162, ВИНИТИ РАН, М., 2019, 136–150  mathnet  mathscinet
  2. Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.  mathnet  crossref
  3. Habibullin I.T. Khakimova A.R., “On a Method For Constructing the Lax pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206  crossref  mathscinet  zmath  isi  scopus
  4. Habibullin I.T. Khakimova A.R. Poptsova M.N., “On a Method For Constructing the Lax pairs For Nonlinear Integrable Equations”, J. Phys. A-Math. Theor., 49:3 (2016), 035202  crossref  mathscinet  zmath  adsnasa  isi  scopus
  5. Meshkov A. Sokolov V., “Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries”, Lett. Math. Phys., 104:3 (2014), 341–360  crossref  mathscinet  zmath  adsnasa  isi  scopus
  6. М. Н. Кузнецова, “О нелинейных гиперболических уравнениях, связанных дифференциальными подстановками с уравнением Клейна–Гордона”, Уфимск. матем. журн., 4:3 (2012), 86–103  mathnet  mathscinet
  7. А. Г. Мешков, В. В. Соколов, “Интегрируемые эволюционные уравнения с постоянной сепарантой”, Уфимск. матем. журн., 4:3 (2012), 104–154  mathnet
  8. Mariya N. Kuznetsova, Asli Pekcan, Anatoliy V. Zhiber, “The Klein–Gordon Equation and Differential Substitutions of the Form $v=\varphi(u,u_x,u_y)$”, SIGMA, 8 (2012), 090, 37 pp.  mathnet  crossref  mathscinet
  9. Adler V.E. Shabat A.B., “Toward a theory of integrable hyperbolic equations of third order”, J. Phys. A, 45:39 (2012), 395207, 17 pp.  crossref  mathscinet  zmath  isi  elib  scopus
  10. Garifullin R.N. Yamilov R.I., “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A, 45:34 (2012), 345205, 23 pp.  crossref  mathscinet  zmath  isi  elib  scopus
Предыдущая
1
2